1 Intro: Tinbergen Wollaston Technique

Consider a star intrinsically polarized where

$$q = \frac{Q}{I} = \frac{I_0 - I_{90}}{I_0 + I_{90}} = \frac{1 - \beta}{1 + \beta}$$
 so $I_{90} = \beta I_0$ and $\beta = \frac{1 - q}{1 + q}$

2 Photometric

Now, introduce a throughput coefficient to account for the different response between the two sides of the Wollaston. Let the left side be A and the right side be B and let $B = \alpha A$ when q = 0. Now let SET 1 be HWP = 0° and SET 2 be HWP = 45°, swapping I_0 and I_{90} . We are assuming α is not dependent on the HWP position!

Following Jaap Tinbergen, define the measured R_q as:

$$R_q^2 = \frac{A_1/B_1}{A_2/B_2} = \frac{1/\alpha\beta}{\beta/\alpha} = \frac{1}{\beta^2}$$

Substituting in for β in terms of q and some algebra we have:

$$q = \frac{R_q - 1}{R_q + 1}$$

Thus the measured q is the same value as the intrinsic q, independent of α .

3 Non-Photometric

In the preceding, we assumed that SET 1 and SET 2 had the same response conditions. That is, if q = 0, then $A_1 = A_2$ and $B_1 = B_2$. What if the

response changed between the two positions of the HWP due to, say, clouds? Here we introduce yet another factor, γ , to represent the change in throughput between SET 1 and SET 2. The definition of R_q from Section 2 is now:

$$R_q^2 = \frac{A_1/B_1}{A_2/B_2} = \frac{1/\alpha\beta}{\gamma\beta/\gamma\alpha} = \frac{1}{\beta^2}$$

So, even in non-photometric weather, the method still works exactly.