1 Intro: Simple Wollaston Methods

Consider a star intrinsically polarized where

$$q = \frac{Q}{I} = \frac{I_0 - I_{90}}{I_0 + I_{90}} = \frac{1 - \beta}{1 + \beta}$$
 so $I_{90} = \beta I_0$ and $\beta = \frac{1 - q}{1 + q}$

2 Photometric

2.1 Method 1

Now, introduce a throughput coefficient to account for the different response between the two sides of the Wollaston. Let the left side be A and the right side be B and let $B = \alpha A$ when q = 0. Now let SET 1 be HWP = 0° and SET 2 be HWP = 45°, swapping I_0 and I_{90} . We are assuming α is not dependent on the HWP position!

Define the measured q_m as:

$$q_m = \frac{(A_1 - B_1) - (A_2 - B_2)}{A_1 + B_1 + A_2 + B_2} = \frac{1 - \alpha\beta - \beta + \alpha}{1 + \alpha\beta + \beta + \alpha}$$

Substituting in for β in terms of q and some algebra we have:

$$q_m = \frac{2q + 2\alpha q}{2 + 2\alpha} = q$$

Thus the measured q_m is the same value as the intrinsic q, independent of α .

2.2 Method 2

One might be tempted to form a q for each SET independently then take half the difference, but this does not work as well. For example:

For SET 1 we have:

$$q_1 = \frac{A_1 - B_1}{A_1 + B_1} = \frac{I_0 - \alpha I_{90}}{I_0 + \alpha I_{90}} = \frac{1 - \alpha \beta}{1 + \alpha \beta}$$

and for SET 2 we have:

$$q_2 = \frac{A_2 - B_2}{A_2 + B_2} = \frac{I_{90} - \alpha I_0}{I_{90} + \alpha I_0} = \frac{\beta - \alpha}{\beta + \alpha}$$

Now define the measured q_m as half the difference between these computed 'q's:

$$q_m = \frac{1}{2}(q_1 - q_2) = \frac{1}{2}\left[\left(\frac{1 - \alpha\beta}{1 + \alpha\beta}\right) - \left(\frac{\beta - \alpha}{\beta + \alpha}\right)\right] = \frac{\alpha(1 - \beta^2)}{\alpha(1 + \beta^2) + \beta(1 + \alpha^2)}$$

After substituting in for β in terms of q and some algebra:

$$q_m = \frac{4q}{(1+\alpha)^2 - q^2 (1-\alpha)^2}$$

Solving for q we have:

$$q = \frac{4 \pm \sqrt{16 + 4q_m^2 \left(1 + \alpha\right)^2}}{2q_m}$$

If $q_m \ll 1$ then:

$$q \approx \frac{1}{4} q_m (1+\alpha)^2$$

If $\alpha \approx 1$ as well, then:

$$q \approx \alpha q_m$$

Thus, the measured value for the fractional polarization is not the intrinsic value and is not independent of α !

3 Non-Photometric

In the preceding, we assumed that SET 1 and SET 2 had the same response conditions. That is, if q = 0, then $A_1 = A_2$ and $B_1 = B_2$. What if the response changed between the two positions of the HWP due to, say, clouds? Here we introduce yet another factor, γ , to represent the change in throughput between SET 1 and SET 2. The definition of q_m from Section 2.1 is now:

$$q_m = \frac{(1 - \alpha\beta) - \gamma(\beta - \alpha)}{(1 + \alpha\beta) + \gamma(\beta + \alpha)}$$

Substituting for β in terms of q and solving for q we have the following big mess:

$$q = \frac{1 - \alpha - \gamma + \alpha\gamma - q_m(1 + \alpha + \gamma + \alpha\gamma)}{q_m(1 - \alpha - \gamma + \alpha\gamma) - (1 + \alpha + \gamma + \alpha\gamma)} = \frac{C_1 - q_mC_2}{q_mC_1 - C_2}$$

where

$$C_1 = 1 - \alpha - \gamma + \alpha \gamma$$
$$C_2 = 1 + \alpha + \gamma + \alpha \gamma$$

Note that if either $\alpha = 1$ or $\gamma = 1$, then $C_1 = 0$ and $q = q_m$, as expected. However, if this is not the case and $\beta = 1$, i.e. no intrinsic polarization, then q_m is:

$$q_m = \frac{(1-\alpha)(1-\gamma)}{(1+\alpha)(1+\gamma)} \neq q = 0$$

which is VERY BAD if α and γ are significantly different from 1. So, lets reconsider Method 2 from Section 2.2 with our factor of γ now included. We have

$$q_m = \frac{1}{2} \left(q_1 - q_2 \right) = \frac{1}{2} \left[\left(\frac{1 - \alpha \beta}{1 + \alpha \beta} \right) - \left(\frac{\gamma \beta - \gamma \alpha}{\gamma \beta + \gamma \alpha} \right) \right]$$

The factor of γ of course cancels and we are left with the same value for q_m as before using Method 2. If the weather sucks and you can roughly estimate α , you are better off with Method 2! In fact, simply using $\alpha = B_1/A_1$ has errors only in second order in q. You could also iterate on α by removing

your first calculation of β (from q) from your initial estimate of α . This would proceed as follows:

Start with α_1

$$\alpha_1 = \frac{B_1}{A_1} = \alpha\beta$$

Compute q_1 and get β_1 from this value. Now set a new value for α_2

$$\alpha_2 = \frac{B_1}{\beta_1 A_1}$$

Using the value for α from just this one iteration will result in errors that now appear only in third order in q. Note this only works for weakly polarized, high S/N sources. However, you could use such a source to get a handle on α in the first place. Of course, you can also use observations of unpolarized standards plus some sort of flat fielding to get a value for α as well. Whatever the case, Method 2 will be your best bet if the sky transmission is iffy.