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1 Definition of Stellar Atmosphere

The stellar atmosphere consists of the outer regions of the star. These are the regions that
are actually observed, so the properties of the radiated flux determined here tell us what
we actually observe about the star. We need to understand radiative transfer to study the
properties of the stellar atmosphere, and how that translates into the observed properties.

2 Radiation Pressure

Radiation pressure:

Prad =
aT 4

3

Gas pressure:

Pgas =
ρNAkT

µ

Where does radiation pressure become important?
Exercise: calculate and compare pressures within the sun, and in its atmosphere.

3 Eddington Limit

Radiation pressure becomes important at the surface, where density is low. Recall equation
for flux:

Fν =
4π

3

∂Bν

∂τν
= −4π

3

1

χνρ

∂Bν

∂r
(1)

because

τν = −
∫ r

∞
χνρ dr

′

Recall

Prad = aT 4/3 (2)

B(T ) =
σ

π
T 4 =

ac

4π
T 4 (3)
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Prad =
4π

3c
B(T ) (4)

(5)

From equation (1),

Fν =
Lν

4πr2
= −4π

3

1

χνρ

∂Bν

∂r
(6)

χνLν
4πr2

= −4π

3

1

ρ

∂Bν

∂r
(7)

1

4πr2

∫ ∞
0

χνLν dν = −4π

3

1

ρ

∂B

∂r
= − c

ρ

∂Prad

∂r
(8)

Define a new mean opacity,

χP =

∫∞
0
χνLνdν

L

(We’ll call it the Planck opacity.) Then

∂Prad

∂r
= − χPρ

4πr2c
L (9)

Let’s revisit the equation of hydrostatic equilibrium:

dP

dr
= −gρ

If radiation pressure is sufficiently high, it will overwhelm gravity, and we no longer have a
hydrostatic model. This is how winds can be launched, mass loss occurs.

dPrad

dr
= −gρ (10)

− χPρ

4πR2c
L = −GM

R2
ρ (11)

L =
4πcGM

χP
(12)

(13)

This is the Eddington luminosity. With greater luminosity, mass loss due to radiation pres-
sure can not be ignored. Some typical values: χP = 0.34 cm2 g−1 for the photosphere,
then

LEdd

L�
≈ 3.5× 104

(
M

M�

)
What is the photosphere?
Let’s consider conditions at or near the surface.
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4 Eddington Approximation

The Eddington approximation means that we assume that the radiation field is nearly
isotropic. Make it up to linear in µ

Iν(τ, µ) = aν(τ) + bν(τ)µ (14)

where τν = −
∫
χνρ dr.

Define

Jν ≡
1

2

∫ +1

−1

Iν dµ = aν (15)

Hν ≡
1

2

∫ +1

−1

µIν dµ =
bν
3

(16)

Kν ≡
1

2

∫ +1

−1

µ2Iν dµ =
aν
3

(17)

(18)

the 0th, 1st and 2nd moments of Iν . Then

Kν = Jν/3.

Recall the equation of radiative transfer:

µ
∂Iν
∂τν

= Iν − Sν (19)

Integrating this by

1

2

∫ 1

−1

dµ ⇒ dHν

dτν
= Jν − Sν (20)

1

2

∫ 1

−1

µ dµ ⇒ dKν

dτν
= Hν →

dJν
dτν

= 3Hν (21)

5 Grey Atmosphere

Assume a “grey” opacity, independent of wavelength:

χν = χP = χ

Then we can replace

J =

∫ ∞
0

J dν H =

∫ ∞
0

H dν S =

∫ ∞
0

S dν

dH

dτ
=

∫ ∞
0

dHν

dτν
dν

dJ

dτ
=

∫ ∞
0

dJν
dτν

dν
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In radiative equilibrium,
J = S = B = σT 4/π

Then Eq. (20) gives us

dH

dτ
= 0 (22)

H = constant (23)

The constant is determined by realizing that

H =
F

4π
=
σT 4

eff

4π

at the surface of a star.
Eq. (21) then gives

J = 3Hτ + C =
3σT 4

eff

4π
(τ + C)

Get C from surface boundary condition. One definition for the surface is where there is no
incoming radiation. Let I(θ) at the surface be isotropic for outgoing angles and zero for
incoming angles.

I(µ) =

{
I, µ > 0
0, µ ≤ 0

(24)

Then

J =
1

2

∫ +1

−1

I dµ =
I

2
(25)

H =
1

2

∫ +1

−1

µI dµ =
1

4
Iµ2

∣∣∣∣1
0

=
I

4
(26)

(27)

so at the surface,
J(τ = 0) = 2H(τ = 0).

So,
J = 3H(τ + 2/3) (28)

But recalling J = B, we now have a relation for temperature versus optical depth:

σT 4

π
=

3σT 4
eff

4π
(τ + 2/3) (29)

T 4 =
3

4
T 4

eff(τ + 2/3) (30)

(31)

The photosphere is where T = Teff or τp = 2/3.
Another way to think about this is that it makes sense for the photosphere to be where

τ ≈ 1 because it is from this region that photons become free to escape from the star – the
mean free path is large enough that photons can escape.
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6 Pressure in the photosphere

Hydrostatic equilibrium:
dP

dr
= −gρ (32)

Since we are considering the surface, gs = GM/R2.

P (τ) = gs

∫ τ

0

dτ ′/χ =
gsτ

χ
+ P (τ = 0)

No gas pressure at surface. If below Eddington luminosity, then Prad is small, too. So,

P (τp) =
2gs
3χp

(33)

aT 4
eff

3
+
NAk

µ
ρpTeff =

2

3

gs
χ0ρnpT

−s
eff

(34)

Can solve for ρp. Equation simplifies if radiation pressure is small.

7 Limb Darkening

The angle at which the viewer sees the surface of a star is θ, and µ = cos θ. In general, a
star does not appear uniformly bright because of this. This is called limb darkening. We
can calculate the brightness as a function of µ to show this effect.

Start with the equation for the temperature in the atmosphere,

T 4 =
3

4
T 4

eff(τ + 2/3)

which shows that temperature decreases toward the stellar surface. And, the equation of
radiative transfer is

µ
∂Iν
∂τν

= Iν − Sν (35)

We can integrate this along the line of sight, keeping µ fixed, to find the intensity emitted
at the surface:

Iν(τ = 0, µ) =

∫ ∞
0

e−t/µ
Sν(t)

µ
dt (36)

Assume LTE and a grey atmosphere. Then we can integrate over all wavelengths and get

S(t) = B[T (τ = t)] =
σ

π
T 4(τ = t) =

3σ

4π
T 4

eff(τ + 2/3)

I(τ = 0, µ) =

∫ ∞
0

e−t/µ
S(t)

µ
dt

=

∫ ∞
0

e−t/µ
3σ

4π
T 4

eff(τ + 2/3)
1

µ
dt

=
3σ

4π
T 4

eff

∫ ∞
0

e−t/µ(τ + 2/3)
1

µ
dt

=
3σ

4π
T 4

eff(µ+ 2/3)
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Then
I(0, µ)

I(0, 1)
=

3

5
(µ+ 2/3) (37)
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