Calculus
- Derivatives
Graphic Derivation:
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Example (periodic motion)

Higher derivatives are expressed using the notation:
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we can write the derivative of y at the point x=a in two different ways:
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Differentiation Rules:


Constant rule: if f(x) is constant, then 
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Linearity:
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     Product rule: [image: image7.png]




Chain rule: If f(x) = h(g(x)), then [image: image8.png]



Examples:
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The derivative of the natural logarithm function is
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By applying the change-of-base rule, the derivative for other bases is
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The antiderivative of the natural logarithm ln(x) is
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and so the antiderivative of the logarithm for other bases is
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Calculus
- Partial Derivatives
Example: Consider the volume of a cone:
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Calculus
- Integrals


http://en.wikipedia.org/wiki/Integral

Graphical integration:
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Rules for integration of general functions
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Vector Algebra



http://em-ntserver.unl.edu/Math/mathweb/vectors/vectors.html
Addition of two vectors is accomplished by laying the vectors head to tail in sequence to create a triangle such as is shown in the figure.
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 The following rules apply in vector algebra.
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Using base (unit) vectors, one can represent any vector F as
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Due to the orthogonality of the bases, one has the following relations.
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3-dim:
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A vector connecting two points:
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Vector Multiplication



Dot product:
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The dot product has the following properties.
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Rectangular coordinates:
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Note:
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Projection of a vector onto a line:
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The cross product:

The cross product of vectors a and b is a vector perpendicular to both a and b and has a magnitude equal to the area of the parallelogram generated from a and b. The direction of the cross product is given by the right-hand rule . The cross product is denoted by a "[image: image48.png]


" between the vectors.
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The cross product has the following properties:
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Rectangular coordinates:
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