D 1 **26.43** •• **CP** In the circuit shown in Fig. E26.43 both capacitors are initially charged to 45.0 V. (a) How long after closing the switch S will the potential across each capacitor be reduced to 10.0 V, and (b) what will be the current at that time? Figure **E26.43**15.0 ± 20.0 μF 30.0 Ω ## **D2** A particle with a charge of – 5.50 nC is moving in an uniform magnetic field of $\vec{B} = -(1.28T)\hat{k}$. The magnetic force on the particle is measured to be $\vec{F} = -(3.90 \times 10^{-7}N)\hat{i} + (7.60 \times 10^{-7}N)\hat{j}$. Calculate the *x*, *y*, and *z* components of the velocity of the particle and determine the angle between the velocity and the magnetic force. ## **D** 3 A group of particles is traveling in a magnetic field of unknown magnitude and direction. You observe that a proton moving at 1.60 km/s in the +x-direction experiences a force of $2.10 \times 10^{-16} N$ in the +y-direction, and an electron moving at 4.30 km/s in the -z-direction experiences a force of $8.30 \times 10^{-16} N$ in the +y-direction. What is the magnitude and direction of the magnetic force on an electron moving in the -v-direction at 3.30 km/s? ## **D** 4 **27.55** • When a particle of charge q > 0 moves with a velocity of \vec{v}_1 at 45.0° from the +x-axis in the xy-plane, a uniform magnetic field exerts a force \vec{F}_2 along the -z-axis (Fig. P27.55). When the same particle moves with a velocity \vec{v}_2 with the same magnitude as \vec{v}_1 but along the +z-axis, a force \vec{F}_2 of magnitude F_2 is exerted on it along the +x-axis. (a) What are the magnitude (in terms of q, v_1 , and F_2) and direction of the magnetic field? (b) What is the magnitude of \vec{F}_1 in terms of F_2 ? Figure **P27.55**