Astr 2310 Thurs. Feb. 16, 2016 Today's Topics

- Celestial Mechanics cont.
 - Newtonian Derivation of Kepler's Laws
 - Newton's Test of Universal Gravitation
 - The Two-Body Problem
 - Least Energy Orbits
 - Example of Least-Energy Orbit to Mars
- Chapter 2: Solar System Overview
 - Constituents
 - Discovery of Outer Planets
 - Fundamental Characteristics
 - Mass and Radius
 - Surface Temperature and Black Body Radiation
 - Planetary Atmospheres and Composition
 - Radioactivity and Half-Life
 - Nuclear Physics (see The Making of the Atomic Bomb by R. Rhodes)
 - Age Dating of Solar System

Homework this Week

- A2310 HW #2
- Due Thursday Feb. 18
- Ryden & Peterson: Ch. 2: #3, #4, #5
- Ryden & Peterson: Ch. 3: #1, #2, #4, #5, #6, #9

Geometric Properties of the Ellipse

FF' = 2ae (definition of e) Consider triangle BcF: $b^{2} + a^{2}e^{2} = r^{2} = a^{2} (r + r' = 2a)$ so: $b^2 = a^2 - a^2 e^2 = a^2 (1 - e^2)$ $b = a(1-e^2)^{1/2}$ (relationship between b & a) Furthermore: $R_{\min} = a - ae = a(1 - e)$ $R_{\text{max}} = a + ae = a(1+e)$ (distances at perihelion, aphelion) Applying law of cosines to F PF gives: $r'^2 = r^2 + (2ae)^2 + 2r(2ae)\cos\theta$ But since r' = 2a - r we have: $4a^2 - 4ar + r^2 = r^2 + 4a^2e^2 + 4rae\cos\theta$ $a - r = ae^2 + re\cos\theta$ $a - ae^2 = r + re\cos\theta$ $a(1-e^2) = r(1+e\cos\theta)$ so: $r = a(1 - e^2)/(1 + e\cos\theta)$ (equ. for ellipse in polar coordinates)

What About the Velocity?

Kepler's 2nd law:

 $1/2 r^2 dq/dt$ = constant (must hold for entire period) $1/2r^2 dq/dt = \pi ab/P$ (area/period) Since $b = a(1 - e^2)^{1/2}$: $r^{2}dq/dt = (2\pi a/P)[a(1-e^{2})^{1/2}]$ Or: $d\theta/dt = (2\pi/P)(a/r)^2(1-e^2)^{1/2}$ Recall $s = rq \operatorname{so} ds / dt = r dq / dt = V\theta$ $V_{\theta} = r \, dq \,/\, dt = r(2\pi \,/\, P)(a^2 \,/\, r^2)(1 - e^2)^{1/2}$ $= (2\pi/P)[a^{2}(1-e^{2})^{1/2}]/[a(1-e^{2})/(1+e\cos\theta)]$ So finally: $V_{\theta} = (2\pi a / P)(1 + e\cos\theta) / (1 - e^2)^{1/2}$ Since $1 - e^2 = (1 + e)(1 - e)$ so we consider 2 cases: Perihelion velocity ($\theta = 0^{\circ}$): $V_{peri} = (2\pi a / P)(1+e) / (1-e^2)^{1/2}$ Aphelion velocity ($\theta = 180^{\circ}$):

Newtonian Derivation of Kepler's Laws

- #1: The general form of a planetary orbit is an ellipse/conic section
 - Extensive derivation requiring calculus (see Mechanics)
- #2: A planet in orbit about the Sun sweeps out equal areas in equal amounts of time
 - Recall that the area of a sector is given by: Area = $\theta r^2/2$ (θ in radians)

Consider the motion of a planet between points 1 & 2 and between points 3 & 4. The orbital path length is given by s_1 and the angular difference is given by q and a given time interval:

$$\Delta t = t_2 - t_1 = t_4 - t_3:$$

The conservation of angular momentum requires:

 $mv_1r_1 = mv_2r_2 = mv_3r_3 = mv_4r_4$ so: $v_1r_1 = v_3r_3$ and multiplying by Δt gives: $\Delta tv_1r_1 = \Delta tv_3r_3$ but since distance = velocity x time we have: $s_{12}r_1 = s_{34}r_3$ but $s_{12} = r_1\theta_{12}$ and $s_{34} = r_3\theta_{34}$ so: $\theta_{12} r_{12} = \theta_{34}r_{32}$ dividing by 2 gives: $(\theta_{12}r_{12})/2 = (\theta_{34}r_{32})/2$ (area of sectors)

2-nd law results from conservation of angular momentum.

Law #3: The square of the orbital period is proportional to the cube of the semi-major axis of it's orbit. Consider a circular orbit for simplicity. Equate the centripital and gravitational forces ($F_c = F_g$):

 $M_p V_p^2 / r = (GM_s M_p) / r^2$ dividing by M_p and 1/r: $V_p^2 = GM_p / r$ but the circular velocity is: $V_p = 2\pi r / P$ where P is the orbital period so: $(2\pi)^2 r^2 / P^2 = GM_p / r$ and solving for p we have: $P^2 = (4\pi^2 / GM_s)r^3$ but the circle is a special case of an ellipse so: $P^2 = k a^3$ or $P^2 = a^3 / M$ (P is in years, a in AU and M is in solar masses)

Newton's Test of Universal Gravitation

Recall the form of Newton's Gravitational Law:

$$F_{g} = GMm/r^{2} \text{ so } a_{g} = F_{g}/m = GM/r^{2}$$

a (apple) = 9.807 m/s² (at R_E)
Since R_E = 6378 km and $d_{m} = 3.844 \text{ x } 10^{5} \text{ km}$:
R_E /d_m = 60.27 so the acceleration at dm should be:
 $a_{m} = a_{g}/(60.27)^{2} = a_{g}/3632$
But what is it?
 $a_{m} = V_{m}^{2}/d_{m}$ V_m = $(2\pi d_{m})/P = 1.023 \text{ x } 10^{3} \text{ m/s}$
So $a_{m} = 2.723 \text{ x } 10^{-3} \text{ m/s}^{2}$

 $a_g /3632 = 2.698 \text{ x } 10^{-3} \text{ m/s}^2 \text{ (within } 1\%!)$

Two-Body Problem

Center of Mass: location where Fg = 0, and lies along the line connecting the two masses. Each mass must have the same orbital period and so:

$$\begin{split} P_1 &= 2\pi r_1/v_1 = P_2 = 2\pi r_2/v_2 \ \text{ so } r_1/v_1 = r_2/v_2 \ \text{ and } \ r_1/r_2 = v_1/v_2 \end{split}$$
 Newton's 3rd law means $F_1 = F_2$ so:

$$\begin{split} m_1 v_1^2 / r_1 &= m_2 v_2^2 / r_2 & \text{substituting for V gives:} \\ (m_1 4 \pi^2 r_1^2) / r_1 P^2 &= (m_2 4 \pi^2 r_2^2) / r_2 P^2 & \text{or:} \\ m_1 r_1 &= m_2 r_2 \text{ thus: } r_1 / r_2 &= m_2 / m_1 = v_1 / v_2 \end{split}$$

Now we define a relative orbit where the more massive object, i.e., the Sun, lies near the center of mass. Let $a = r_1 + r_2$ and $v = v_1 + v_2$ Since $r_1 = r_2 + m_2/m_1$ and $r_1 + r_2 = m_2r_2/m_1 + r_2$ so $a = r_2(1 + m_2/m_1)$ The displacement is small for planets. Note: $r_2 = a/(m_1/m_1 + m_2/m_1)$ and $r_2 = m_1a/(m_1 + m_2)$ combining gives: $r_1 = m_2a/(m_1+m_2)$ (note the symmetry) Recall that $F_g = F_c$ (gravity = centripital force) $F_1 = m_1v_1^2/r_1 = Gm_1m_2/(r_1+r_2)^2$ substituting for v_1 (circular orbit) $4\pi^2m_1r_1/P^2 = 4\pi^2m_1m_2a/P^2(m_1+m_2) = Gm_1m_2/a^2$ Thus: $P^2 = [4\pi^2/G(m_1+m_2)]a^3$ (Newtonian form of Kepler s 3-rd Law) Note: Masses can be derived given the period and semi-major axis of the orbits.

Two-Body Problem

Center of Mass: location where Fg = 0, and lies along the line connecting the two masses. Each mass must have the same orbital period and so:

$$\begin{split} P_1 &= 2\pi r_1/v_1 = P_2 = 2\pi r_2/v_2 \ \text{ so } r_1/v_1 = r_2/v_2 \ \text{ and } \ r_1/r_2 = v_1/v_2 \end{split}$$
 Newton's 3rd law means $F_1 = F_2$ so:

$$\begin{split} m_1 v_1^2 / r_1 &= m_2 v_2^2 / r_2 & \text{substituting for V gives:} \\ (m_1 4 \pi^2 r_1^2) / r_1 P^2 &= (m_2 4 \pi^2 r_2^2) / r_2 P^2 & \text{or:} \\ m_1 r_1 &= m_2 r_2 \text{ thus: } r_1 / r_2 &= m_2 / m_1 = v_1 / v_2 \end{split}$$

Now we define a relative orbit where the more massive object, i.e., the Sun, lies near the center of mass. Let $a = r_1 + r_2$ and $v = v_1 + v_2$ Since $r_1 = r_2 + m_2/m_1$ and $r_1 + r_2 = m_2r_2/m_1 + r_2$ so $a = r_2(1 + m_2/m_1)$ The displacement is small for planets. Note: $r_2 = a/(m_1/m_1 + m_2/m_1)$ and $r_2 = m_1a/(m_1 + m_2)$ combining gives: $r_1 = m_2a/(m_1+m_2)$ (note the symmetry) Recall that $F_g = F_c$ (gravity = centripital force) $F_1 = m_1v_1^2/r_1 = Gm_1m_2/(r_1+r_2)^2$ substituting for v_1 (circular orbit) $4\pi^2m_1r_1/P^2 = 4\pi^2m_1m_2a/P^2(m_1+m_2) = Gm_1m_2/a^2$ Thus: $P^2 = [4\pi^2/G(m_1+m_2)]a^3$ (Newtonian form of Kepler s 3-rd Law) Note: Masses can be derived given the period and semi-major axis of the orbits.

