Astr 2310 Thurs. Feb. 16, 2016

Today's Topics

- Celestial Mechanics cont.
- Newtonian Derivation of Kepler's Laws
- Newton's Test of Universal Gravitation
- The Two-Body Problem
- Least Energy Orbits
- Example of Least-Energy Orbit to Mars
- Chapter 2: Solar System Overview
- Constituents
- Discovery of Outer Planets
- Fundamental Characteristics
- Mass and Radius
- Surface Temperature and Black Body Radiation
- Planetary Atmospheres and Composition
- Radioactivity and Half-Life
- Nuclear Physics (see The Making of the Atomic Bomb by R. Rhodes)
- Age Dating of Solar System

Homework this Week

- A2310 HW \#2
- Due Thursday Feb. 18
- Ryden \& Peterson: Ch. 2: \#3, \#4, \#5
- Ryden \& Peterson: Ch. 3: \#1, \#2, \#4, \#5, \#6, \#9

Geometric Properties of the Ellipse

$F F^{\prime}=2 a e($ definition of e)
Consider triangle BCF :
$b^{2}+a^{2} e^{2}=r^{2}=a^{2}\left(r+r^{\prime}=2 a\right) \mathrm{s} 0:$
$b^{2}=a^{2}-a^{2} e^{2}=a^{2}\left(1-e^{2}\right)$
$b=a\left(1-e^{2}\right)^{1 / 2}$ (relationship between $\mathrm{b} \& \mathrm{a}$)
Furthermore:
$R_{\text {min }}=a-a e=a(1-e)$
$R_{\text {max }}=a+a e=a(1+e)$
(distances at perihelion, aphelion)
Applying law of cosines to FPF gives:
$r^{2}=r^{2}+(2 a e)^{2}+2 r(2 a e) \cos \theta$
But since $r=2 a-r$ we have:

$4 a^{2}-4 a r+r^{2}=r^{2}+4 a^{2} e^{2}+4 r a c \cos \theta$
$a-r=a e^{2}+r e \cos \theta$
$a-a e^{2}=r+r e \cos \theta$
$a\left(1-e^{2}\right)=r(1+e \cos \theta) \mathrm{so}:$
$r=a\left(1-e^{2}\right) /(1+e \cos \theta)$ (equ. for ellipse in polar coordinates)

What About the Velocity?

Kepler's 2nd law:
$1 / 2 r^{2} d q / d t=$ constant (must hold for entire period)
$1 / 2 r^{2} d q / d t=\pi a b / P$ (area/period)
Since $b=a\left(1-e^{2}\right)^{1 / 2}$:
$r^{2} d q / d t=(2 \pi a / P)\left[a\left(1-e^{2}\right)^{1 / 2}\right]$
Or:
$\mathrm{d} \theta / \mathrm{dt}=(2 \pi / \mathrm{P})(\mathrm{a} / \mathrm{r})^{2}\left(1-\mathrm{e}^{2}\right)^{1 / 2}$
Recall $s=r q$ so $d s / d t=r d q / d t=V \theta$
$V_{\theta}=r d q / d t=r(2 \pi / P)\left(a^{2} / r^{2}\right)\left(1-e^{2}\right)^{1 / 2}$
$=(2 \pi / P)\left[a^{2}\left(1-e^{2}\right)^{1 / 2}\right] /\left[a\left(1-e^{2}\right) /(1+e \cos \theta)\right]$
So finally:
$V_{\theta}=(2 \pi a / P)(1+e \cos \theta) /\left(1-e^{2}\right)^{1 / 2}$

Since $1-e^{2}=(1+e)(1-e)$ so we consider 2 cases:
Perihelion velocity $\left(\theta=0^{\circ}\right)$:
$V_{\text {peri }}=(2 \pi a / P)(1+e) /\left(1-e^{2}\right)^{1 / 2}$
Aphelion velocity $\left(\theta=180^{\circ}\right)$:
$V_{a p h}=(2 \pi a / P)(1-e)\left(1-e^{2}\right)^{1 / 2}$

Newtonian Derivation of Kepler's Laws

- \#1: The general form of a planetary orbit is an ellipse/conic section
- Extensive derivation requiring calculus (see Mechanics)
- \#2: A planet in orbit about the Sun sweeps out equal areas in equal amounts of time - Recall that the area of a sector is given by: Area $=\theta r^{2} / 2$ (θ in radians)

Consider the motion of a planet between points $1 \& 2$ and between points $3 \& 4$. The orbital path length is given by s_{1} and the angular difference is given by q and a given time interval:
$\Delta t=t_{2}-t_{1}=t_{4}-t_{3}:$
The conservation of angular momentum requires:
$m v_{1} r_{1}=m v_{2} r_{2}=m v_{3} r_{3}=m v_{4} r_{4}$ so:
$v_{1} \mathrm{r}_{1}=v_{3} \mathrm{r}_{3}$ and multiplying by Δt gives:
$\Delta \mathrm{tv}_{1} \mathrm{r}_{1}=\Delta \mathrm{tv}_{3} \mathrm{r}_{3}$ but since distance $=$ velocity x time we have:
$s_{12} r_{1}=s_{34} r_{3}$ but $\mathrm{s}_{12}=r_{1} \theta_{12}$ and $\mathrm{s}_{34}=r_{3} \theta_{34}$ so:
$\theta_{12} r_{12}=\theta_{34} r_{32} \quad$ dividing by 2 gives:
$\left(\theta_{12} r_{12}\right) / 2=\left(\theta_{34} r_{32}\right) / 2 \quad$ (area of sectors)
2 -nd law results from conservation of angular momentum.

Law \#3: The square of the orbital period is proportional to the cube of the semi-major axis of it's orbit. Consider a circular orbit for simplicity. Equate the centripital and gravitational forces ($\mathrm{F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{g}}$):

$$
\begin{array}{ll}
\left.M_{p} V_{p}^{2}\right) / r=\left(G M_{s} M_{p}\right) / r^{2} & \text { dividing by } M_{p} \text { and } 1 / r: \\
V_{p}^{2}=G M_{p} / r & \text { but the circular velocity is: } \\
V_{p}=2 \pi r / P & \text { where } \mathrm{P} \text { is the orbital period so: }
\end{array}
$$

$$
(2 \pi)^{2} r^{2} / P^{2}=G M_{p} / r \quad \text { and solving for } \mathrm{p} \text { we have: }
$$

$$
P^{2}=\left(4 \pi^{2} / G M_{s}\right) r^{3} \quad \text { but the circle is a special case of an ellipse so: }
$$

$$
P^{2}=k a^{3} \text { or } P^{2}=a^{3} / M \quad(\mathrm{P} \text { is in years, } \mathrm{a} \text { in } \mathrm{AU} \text { and } \mathrm{M} \text { is in solar masses })
$$

Newton's Test of Universal Gravitation

Recall the form of Newton s Gravitational Law:

$$
\begin{aligned}
F_{g}=G M m / r^{2} \text { so } a_{g} & =F_{g} / m=G M / r^{2} \\
& \mathrm{a}(\text { apple })=9.807 \mathrm{~m} / \mathrm{s}^{2}\left({\text { at } \mathrm{R}_{\mathrm{E}}}\right)
\end{aligned}
$$

Since $R_{E}=6378 \mathrm{~km}$ and $d_{m}=3.844 \times 10^{5} \mathrm{~km}$:
$R_{E} / d_{m}=60.27$ so the acceleration at dm should be:
$\mathrm{a}_{\mathrm{m}}=\mathrm{a}_{\mathrm{g}} /(60.27)^{2}=\mathrm{a}_{\mathrm{g}} / 3632$
But what is it?

$$
\mathrm{a}_{\mathrm{m}}=\mathrm{V}_{m}^{2} / \mathrm{d}_{\mathrm{m}} \quad \mathrm{~V}_{\mathrm{m}}=\left(2 \pi \mathrm{~d}_{\mathrm{m}}\right) / \mathrm{P}=1.023 \times 10^{3} \mathrm{~m} / \mathrm{s}
$$

So $\mathrm{a}_{\mathrm{m}}=2.723 \times 10-^{3} \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{a}_{\mathrm{g}} / 3632=2.698 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}($ within $1 \%!$)

Two-Body Problem

Center of Mass: location where $\mathrm{Fg}=0$, and lies along the line connecting the two masses. Each mass must have the same orbital period and so:
$\mathrm{P}_{1}=2 \pi \mathrm{r}_{1} / \mathrm{v}_{1}=\mathrm{P}_{2}=2 \pi \mathrm{r}_{2} / \mathrm{v}_{2}$ so $\mathrm{r}_{1} / \mathrm{v}_{1}=\mathrm{r}_{2} / \mathrm{v}_{2}$ and $\mathrm{r}_{1} / \mathrm{r}_{2}=\mathrm{v}_{1} / \mathrm{v}_{2}$
Newton's 3rd law means $\mathrm{F}_{1}=\mathrm{F}_{2}$ so:
$\mathrm{m}_{1} \mathrm{v}_{1}^{2} / r_{1}=\mathrm{m}_{2} \mathrm{v}_{2}^{2} / r_{2} \quad$ substituting for V gives:

$\left(\mathrm{m}_{1} 4 \pi^{2} \mathrm{r}_{1}^{2}\right) / \mathrm{r}_{1} P^{2}=\left(\mathrm{m}_{2} 4 \pi^{2} \mathrm{r}_{2}^{2}\right) / \mathrm{r}_{2} P^{2} \quad$ or:
$\mathrm{m}_{1} \mathrm{r}_{1}=\mathrm{m}_{2} \mathrm{r}_{2}$ thus: $\mathrm{r}_{1} / \mathrm{r}_{2}=\mathrm{m}_{2} / \mathrm{m}_{1}=\mathrm{v}_{1} / \mathrm{v}_{2}$
Now we define a relative orbit where the more massive object, i.e.,
the Sun, lies near the center of mass. Let $a=r_{1}+r_{2}$ and $v=v_{1}+v_{2}$
Since $r_{1}=r_{2}+m_{2} / m_{1}$ and $r_{1}+r_{2}=m_{2} r_{2} / m_{1}+r_{2}$ so $a=r_{2}\left(1+m_{2} / m_{1}\right)$
The displacement is small for planets. Note:
$\mathrm{r}_{2}=\mathrm{a} /\left(\mathrm{m}_{1} / \mathrm{m}_{1}+\mathrm{m}_{2} / \mathrm{m}_{1}\right)$ and $\mathrm{r}_{2}=\mathrm{m}_{1} \mathrm{a} /\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)$ combining gives:
$\mathrm{r}_{1}=\mathrm{m}_{2} \mathrm{a} /\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)$ (note the symmetry)
Recall that $\mathrm{F}_{\mathrm{g}}=\mathrm{F}_{\mathrm{c}} \quad$ (gravity $=$ centripital force)
$\mathrm{F}_{1}=\mathrm{m}_{1} \mathrm{v}_{1}^{2} / \mathrm{r}_{1}=\mathrm{Gm}_{1} \mathrm{~m}_{2} /\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)^{2}$ substituting for v_{1} (circular orbit)
$4 \pi^{2} \mathrm{~m}_{1} \mathrm{r}_{1} / \mathrm{P}^{2}=4 \pi^{2} \mathrm{~m}_{1} \mathrm{~m}_{2} \mathrm{a} / \mathrm{P}^{2}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{a}^{2} \quad$ Thus:
$P^{2}=\left[4 \pi^{2} / G\left(m_{1}+m_{2}\right)\right] a^{3}$ (Newtonian form of Kepler s 3-rd Law)
Note: Masses can be derived given the period and semi-major axis of the orbits.

Two-Body Problem

Center of Mass: location where $\mathrm{Fg}=0$, and lies along the line connecting the two masses. Each mass must have the same orbital period and so:
$\mathrm{P}_{1}=2 \pi \mathrm{r}_{1} / \mathrm{v}_{1}=\mathrm{P}_{2}=2 \pi \mathrm{r}_{2} / \mathrm{v}_{2}$ so $\mathrm{r}_{1} / \mathrm{v}_{1}=\mathrm{r}_{2} / \mathrm{v}_{2}$ and $\mathrm{r}_{1} / \mathrm{r}_{2}=\mathrm{v}_{1} / \mathrm{v}_{2}$
Newton's 3rd law means $\mathrm{F}_{1}=\mathrm{F}_{2}$ so:
$\mathrm{m}_{1} \mathrm{v}_{1}^{2} / r_{1}=\mathrm{m}_{2} \mathrm{v}_{2}^{2} / r_{2} \quad$ substituting for V gives:

$\left(\mathrm{m}_{1} 4 \pi^{2} \mathrm{r}_{1}^{2}\right) / \mathrm{r}_{1} P^{2}=\left(\mathrm{m}_{2} 4 \pi^{2} \mathrm{r}_{2}^{2}\right) / \mathrm{r}_{2} P^{2} \quad$ or:
$\mathrm{m}_{1} \mathrm{r}_{1}=\mathrm{m}_{2} \mathrm{r}_{2}$ thus: $\mathrm{r}_{1} / \mathrm{r}_{2}=\mathrm{m}_{2} / \mathrm{m}_{1}=\mathrm{v}_{1} / \mathrm{v}_{2}$
Now we define a relative orbit where the more massive object, i.e.,
the Sun, lies near the center of mass. Let $a=r_{1}+r_{2}$ and $v=v_{1}+v_{2}$
Since $r_{1}=r_{2}+m_{2} / m_{1}$ and $r_{1}+r_{2}=m_{2} r_{2} / m_{1}+r_{2}$ so $a=r_{2}\left(1+m_{2} / m_{1}\right)$
The displacement is small for planets. Note:
$\mathrm{r}_{2}=\mathrm{a} /\left(\mathrm{m}_{1} / \mathrm{m}_{1}+\mathrm{m}_{2} / \mathrm{m}_{1}\right)$ and $\mathrm{r}_{2}=\mathrm{m}_{1} \mathrm{a} /\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)$ combining gives:
$\mathrm{r}_{1}=\mathrm{m}_{2} \mathrm{a} /\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)$ (note the symmetry)
Recall that $\mathrm{F}_{\mathrm{g}}=\mathrm{F}_{\mathrm{c}} \quad$ (gravity $=$ centripital force)
$\mathrm{F}_{1}=\mathrm{m}_{1} \mathrm{v}_{1}^{2} / \mathrm{r}_{1}=\mathrm{Gm}_{1} \mathrm{~m}_{2} /\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)^{2}$ substituting for v_{1} (circular orbit)
$4 \pi^{2} \mathrm{~m}_{1} \mathrm{r}_{1} / \mathrm{P}^{2}=4 \pi^{2} \mathrm{~m}_{1} \mathrm{~m}_{2} \mathrm{a} / \mathrm{P}^{2}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{a}^{2} \quad$ Thus:
$P^{2}=\left[4 \pi^{2} / G\left(m_{1}+m_{2}\right)\right] a^{3}$ (Newtonian form of Kepler s 3-rd Law)
Note: Masses can be derived given the period and semi-major axis of the orbits.

