Astr 2310 Tues. Feb. 4, 2014 Today's Topics

- Celestial Mechanics cont.
- Least Energy Orbits
- Example of Least-Energy Orbit to Mars
- Chapter 2: Solar System Overview
- Constituents
- Discovery of Outer Planets
- Fundamental Characteristics
- Mass and Radius
- Surface Temperature and Black Body Radiation
- Planetary Atmospheres and Composition
- Radioactivity and Half-Life
- Nuclear Physics (see The Making of the Atomic Bomb by R. Rhodes)
- Age Dating of Solar System

Chapter 2: Homework

- \#2, 3, 6 + Kepler's Law Graph in Excel
- Due Thursday February 6

Newtonian Gravity Cont.

To reach low Earth orbit requires enormous energy

- At Earth' s equator: $\mathrm{V}_{\text {rot }}=1000 \mathrm{mi} / \mathrm{hr}=0.5 \mathrm{~km} / \mathrm{s}$
- Compare to velocity of circular orbit:

$$
\begin{aligned}
V_{c} & =\sqrt{\frac{G M}{r}} \\
& \left.=\operatorname{SQRT}\left[\left(6.67 \times 10^{-11}\right)\left(5.97 \times 10^{24}\right) / 6.387 \times 10^{6}\right)\right] \\
\mathbf{V}_{\mathrm{c}} & =7.9 \mathrm{~km} / \mathrm{sec}
\end{aligned}
$$

Consider the energy equation which will relate the shape of the orbit to its energy $\left[\mathrm{V}\left(\mathrm{R}_{\mathrm{E}}\right)\right]$

Consider 3 cases:

$$
\begin{aligned}
& V=V_{\text {cir }} @ R_{E} \\
& \left.V<V_{\text {cir }} R_{E}=\text { apogee }\right) \\
& V>V_{\text {cir }}\left(R_{E}=\text { perigee }\right)
\end{aligned}
$$

Note change in focus

Conservation of Energy Yields Energy Equation (object in orbit around the Earth or the Sun)

$$
T E=K E+P E
$$

$$
=1 / 2 m_{1} v_{1}^{2}+1 / 2 m_{2} v_{2}^{2}-\frac{G m_{1} m_{2}}{r}
$$

Since $m_{1} v_{1}=m_{2} v_{2}$ then $v_{1}=m_{2} v_{2} / m_{1}$
Now consider the relative velocity:
$v=v_{1}+v_{2}=m_{2} v_{2} / m_{1}+v_{2}$ so:
$v_{2}=m_{1} v /\left(m_{1}+m_{2}\right)$ and $v_{1}=m_{2} v /\left(m_{1}+m_{2}\right)$
In this case the total energy becomes:

$$
\begin{aligned}
T E & =1 / 2 m_{1}\left[m_{2}^{2} v_{2} /\left(m_{1}+m_{2}\right)\right]^{2}+1 / 2 m_{2}\left[m_{1}^{2} v_{2} /\left(m_{1}+m_{2}\right)\right]^{2}-G m_{1} m_{2} / r \\
& =v^{2} / 2\left(m_{1}+m_{2}\right)^{2}\left[m_{1} m_{2}^{2}+m_{2} m_{1}^{2}\right]-G m_{1} m_{2} / r \\
& =v^{2} m_{1} m_{2} / 2\left(m_{1}+m_{2}\right)-G m_{1} m_{2} / r \\
T E & =m_{1} m_{2}\left[v^{2} / 2\left(m_{1}+m_{2}\right)-G / r\right]
\end{aligned}
$$

$T E=m_{1} m_{2}\left[v^{2} / 2\left(m_{1}+m_{2}\right)-G / r\right]$
Now lets evaluate this at perihelion $(\theta=0)$:
First recall that $r=a\left(1-e^{2}\right) /(1+e \cos \theta)$ so $r_{p e r i}=a\left(1-e^{2}\right) /(1+e)$
And so:
$(T E)_{\text {peri }}=m_{1} m_{2}\left[v^{2} / 2\left(m_{1}+m_{2}\right)-G(1+e) / a\left(1+e^{2}\right)\right]$ continuing:
Recall: $v_{\text {peri }}=(2 \pi a / P)[(1+e) /(1-e)]^{1 / 2}$ thus:
$(T E)_{p e r i}=m_{1} m_{2}\left\{\left[4 \pi^{2} a^{2}(1+e)\right] /\left[2 \pi^{2}\left(m_{1}+m_{2}\right)(1-e)\right]-G(1+e) / a\left(1+e^{2}\right)\right\}$
But $P^{2}=4 \pi^{2} a^{3} / G\left(m_{1}+m_{2}\right)$ so $G=4 \pi^{2} a^{3} / P^{2}\left(m_{1}+m_{2}\right)$
And: $\left.(T E)_{\text {peri }}=m_{1} m_{2}\{[G(1+e)] / 2 a(1-e)]-G / a(1-e)\right\}$

$$
=\left(G m_{1} m_{2} / 2 a\right)[(1+e-2) /(1-e)]
$$

so:

$$
(T E)_{\text {peri }}=-G m_{1} m_{2} / 2 a
$$

but energy is always conserved so this is also true in general. Thus:
$-G m_{1} m_{2} / 2 a=m_{1} m_{2}\left[v^{2} / 2\left(m_{1}+m_{2}\right)-G / r\right]$ and so:
$G(1 / r-1 / a)=v^{2} / 2\left(m_{1}+m_{2}\right)$ and solving for v gives us:
$v^{2}=2 G\left(m_{1}+m_{2}\right)[1 / r-1 / 2 a]$ or:
$v^{2}=G\left(m_{1}+m_{2}\right)[2 / r-1 / a]$ this is the energy equation

Example of a Least-Energy Orbit to Mars

We can rewrite the energy equation in terms of "Earth orbital units" (P in years, r and a in AU). In this case we have:
$\mathrm{V}^{2}=2 / \mathrm{r}-1 / \mathrm{a}$
Let $r=r_{E}=1 \mathrm{AU}, r_{m}=1.524 \mathrm{AU}$
So a $=\left(r_{m}+r_{E}\right) / 2=1.262 \mathrm{AU}$
Thus: $\mathrm{V}^{2}=2-1 / 1.262=1.206$ So: $\mathrm{v}=1.098$ (in terms of Earth's orbital velocity)
$\mathrm{V}_{\mathrm{c}}(\mathrm{E})=2 \pi \mathrm{r}_{\mathrm{E}} /(365 \mathrm{X} 24 \mathrm{X} 3600)$
$=9.400 \times 10^{8} \mathrm{~km} / 3.154 \times 10^{7} \mathrm{sec}$
$=29.8 \mathrm{~km} / \mathrm{sec}$
So $V(E \rightarrow M)=32.7$ km/sec
What is the time to reach Mars?
$P^{2}=a^{3}$ so $P=(1.262)^{3 / 2}=1.418 \mathrm{yrs}$
Time to Mars = P/2 = 259 days
$P($ Mars $)=687$ days so $\theta=136^{\circ}$
 (pos. of Earth \& Mars at Launch)

Some Special Cases of the Energy Equation

Recall the energy equation:
$\mathrm{V}^{2}=\mathrm{G}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)[2 / \mathrm{r}-1 / \mathrm{a}]$
(1) For a circular orbit about a mass ($\left.m_{2} \ll m_{1}\right), a=r$ so:
$\mathrm{V}^{2}=\mathrm{Gm}_{1}[2 / \mathrm{r}-1 / \mathrm{r}]=\mathrm{Gm} \mathrm{m}_{1} / \mathrm{r} \longrightarrow \mathrm{V}=\operatorname{SQRT}(\mathrm{GM} / \mathrm{r})$
(2) For the escape velocity we want a \longrightarrow infinity so:
$\mathrm{V}^{2}=\mathrm{Gm}_{1}[2 / \mathrm{r}-0]=2 \mathrm{Gm}_{1} / \mathrm{r} \longrightarrow \mathrm{V}=\operatorname{SQRT}(2 \mathrm{Gm} / \mathrm{r})$
And so $\mathrm{V}_{\text {esc }}=\operatorname{SQRT}(2) \mathrm{V}_{\text {cir }}$

