Astr 2310 Thurs. May 1, 2014 Today's Topics

- Chapter 8: The Solar System in Perspective
 - Planets within the Solar System
 - Equilibrium Temperatures
 - Retention of Atmosphere
 - Physical and Orbital Properties
 - Trends in Composition
 - Origin of the Solar System
 - Nebular Hypothesis
 - Open Questions
 - How Unique is the Solar System
 - Detecting Exoplanets
 - Detection Techniques
 - Initial Discoveries
 - Selection Effects
 - Future Trends

Chapter 8: Homework

- Chapter 8: #1, 2, 3, 4, 7
- Due Thursday May 1

Chapter 8: The Solar System in Perspective

- Planets within the Solar System
 - Planetary Orbits in Nearly the Same Plane
 - Sun's Equator Close to the Plane
 - Planetary Orbits Nearly Circular
 - Orbital Angular Momentum Vectors Aligned
 - Rotational Angular Momentum Vectors Mostly Aligned
 - Orbital Debris Also Nearly Planar Orbits
 - Decreasing Mean Density with Radius
 - Chemical Composition with Radius
 - Differentiation Implies Melting of Terrestrial Planets
 - Evidence for Intense Early Bombardment

Equilibrium Temperature for Planets

A Planet Must Be in Thermal Equilibrium or its Temperature will Rise or Fall.

It Must Radiate as Much Energy as it Receives from the Sun:

Energy Received is the Flux from the Sun Times the Planet's Cross Section Times (1-A):

$$W(r) = \frac{L_{\circ}}{4\pi r^2} \left(\pi R_p^2\right) \left(1 - A\right) \text{ where r is the planet's distance from the Sun and } R_p \text{ is its radius}$$

The Energy Radiated by the Planet is the Radiant Power per Meter² Times its Surface Area: $L_{p} = 4\pi R_{p}^{2} \sigma T_{p}^{4}$ and so if we set these equal:

$$\frac{L_{o}}{4\pi r^{2}} \left(\pi R_{p}^{2}\right) \left(1-A\right) = 4\pi R_{p}^{2} \sigma T_{p}^{4} \quad \text{and so if we solve for T:}$$

$$T_p = \left\lfloor \frac{L_o}{16\sigma\pi r^2} (1 - A) \right\rfloor \quad \text{but we can simplify this further by substituting for } L_o:$$

$$L_{\circ} = 4\pi R_{\circ}^2 \sigma T_{\circ}^4$$
 and so we then have:

$$T_p = \left(\frac{R_o}{r}\right)^{1/2} \left(\frac{1-A}{4}\right)^{1/4} T_o \text{ and then when we insert numbers for the Sun:}$$

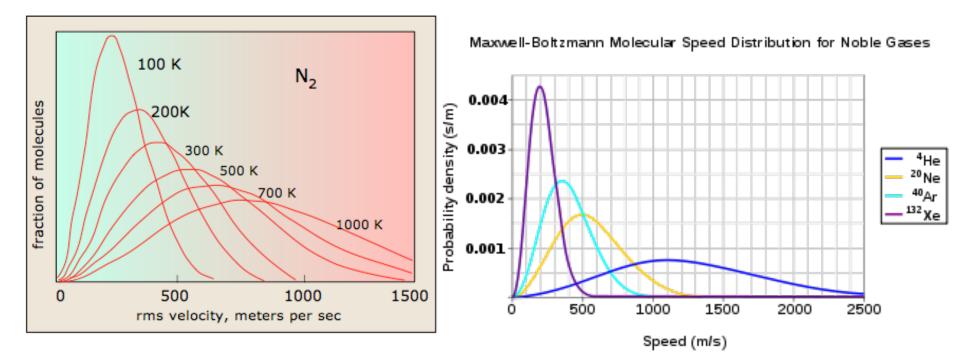
$$T_p \approx 279^{\circ} K (1-A)^{1/4} \left(\frac{r}{1AU}\right)^{-n/2}$$
 and a couple of special cases are:

1) If the planet is fully absorbing (A = 0) the equilibrium blackbody temperature is:

$$T_{bb} \approx 279^{\,o} K {\left(\frac{r}{1 A U} \right)}^{-1/2}$$

2) If the planet is slowly rotating the 1 m^2 with the Sun directly overhead:

$$\frac{L_{\circ}}{4\pi r^{2}}(1-A) = \sigma T_{p}^{4} \text{ and so we can define the sub-solar temperature as:}$$
$$T_{ss} = \left(\frac{R_{\circ}}{r}\right)^{1/2} (1-A)^{1/4} T_{\circ} \text{ and putting in the Sun's numbers gives:}$$
$$T_{ss} \approx 395^{\circ} K (1-A)^{1/4} \left(\frac{r}{1AU}\right)^{-1/2}$$


Atmospheric Retention for Planets

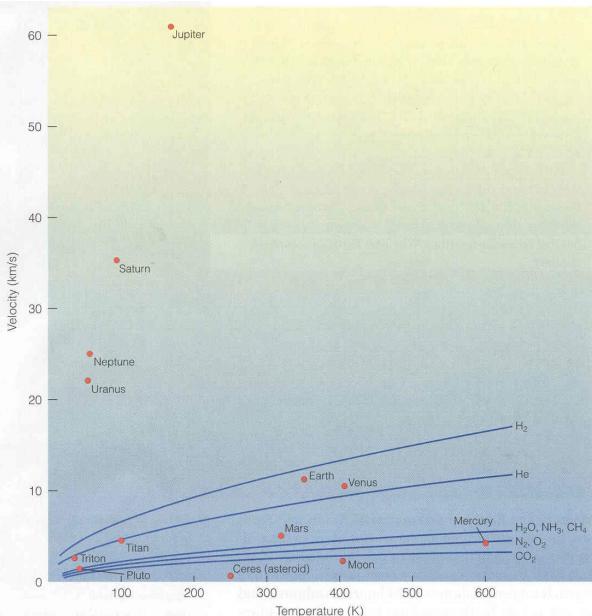
Statistical Mechanics Used to Compute the Velocity Distribution Function for Molecules Derivation is Complicated so We Give Only Results, the Boltzmann Distribution:

 $f(v) = 4\pi \left[\frac{m}{2\pi kT}\right]^{3/2} v^2 e^{-mv^2/kT}$ The distribution can be integrated and differentiated: $\frac{\sqrt{2kT}}{\sqrt{2}} \left(1 + \frac{1}{2}\right) = \frac{1}{\sqrt{2}} \sqrt{\frac{3}{2}}$

$$v_p = \sqrt{\frac{2kT}{m}}$$
 (most probable speed) with $\langle v \rangle = \frac{2}{\sqrt{\pi}} v_p$ and $\sqrt{\langle v^2 \rangle} = \sqrt{\frac{3}{2}} v_p$

If the escape velocity of a planet is less than about 10x $\langle v \rangle$ the planet will evaporate atm. in 10⁹ years.

Why Some Atmospheres are Lost


- Compare velocity of gas atoms (V_{gas}) to planet's escape velocity V_{esc}
 - If any significant # of atoms have escape speed atmosphere will eventually be lost
 - In a gas the atoms have a range of velocities, with a few atoms having up to about 10 × the average velocity, so we need 10 × V_{avg gas} < V_{esc} to keep atmosphere for 4.5 billion years. $V_{Avg Gas} = \sqrt{\frac{3kT}{m}}$ $V_{Escape} = \sqrt{\frac{2GM}{R}}$

- In above equations R = planet radius, M = planet mass, T = planet temperature, m = mass of atom or molecule, k and G are physical constants
- Big planets have larger V_{esc} (i.e. larger M/R \propto R³/R) so hold atmospheres better
 - Earth would retain an atmosphere better than Mercury or the Moon
- Cold planets have lower V_{gas} so hold atmospheres better Saturn's moon Titan will hold an atmosphere better than our moon ٠
- Heavier gasses have lower V_{gas} so are retained better than light ones CO_2 or O_2 retained better than He, H₂, or H ٠

 - Even with "heavy" gasses like we H_2^{2O} we need to worry about **loss of H** if solar UV breaks H₂O apart. That is what happens on Venus.

Which Planets can Retain which Gasses?

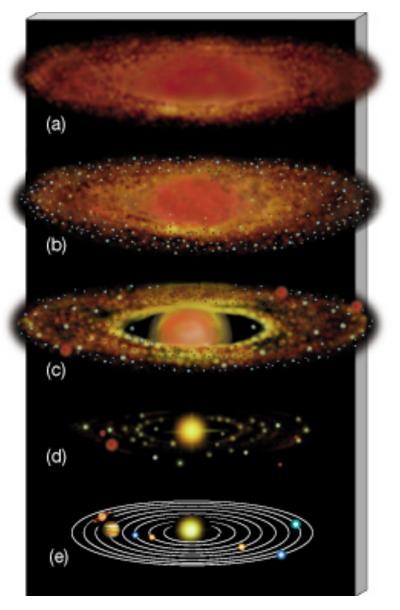
- Jovian Planets
 - can retain all gasses
- Earth and Venus
 - can retain all except H₂
 - Cold trap on Earth preserves our H
- Mars
 - can retain CO₂
 - barely retains H₂O
- Titan and Triton
 - only moons which can retain atmospheres

From our text Horizons, by Seeds

Age Dating Planetary Surfaces

The Most Reliable Method for Age-Dating Uses Radioactive Decay (see Ch. 9) A Radioactive Isotope has an Unstable Nucleus Which Ejects a Particle or Photon ${}^{235}_{92}U \rightarrow {}^{231}_{90}Th + {}^{4}_{2}He$ but eventually resulting in ${}^{206}_{82}Pb$ but Pb is found in nature so we have to account for the natural amount in a particular mineral that also has U (hard). But if we can measure the decay (daughter) product and we know the decay rate we can compute the elapsed time:

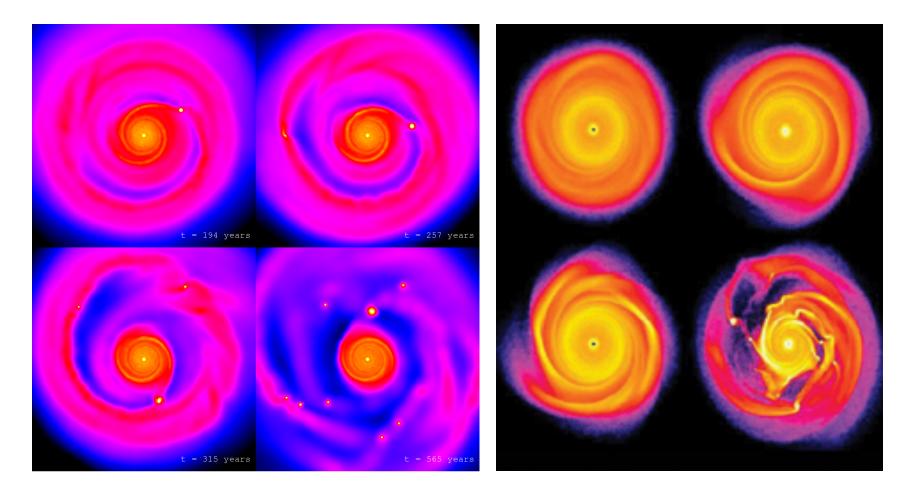
 $dN = -\lambda N dt \quad \text{[number of decays depends on number of nuclei (N) and the decay rate (\lambda)]}$ $\frac{dN}{N} - \lambda dt \quad \text{and so integrating we have:}$ $\ln[N(t)] - \ln[N(0)] = -\lambda t \quad \text{and so:}$ $\frac{N(t)}{N_0} = e^{-\lambda t} \quad \text{or} \quad N(t) = N_0 e^{-\lambda t} \quad \text{[number decreases (decays) exponentially]}$


The half-life (τ) is the time for half of the radioactive isotope to decay:

 $N(t) = N_0 e^{-\left(\ln 2\frac{t}{\tau}\right)}$ for $\frac{235}{92}U$ the half-life is 700 x 10⁶ years.

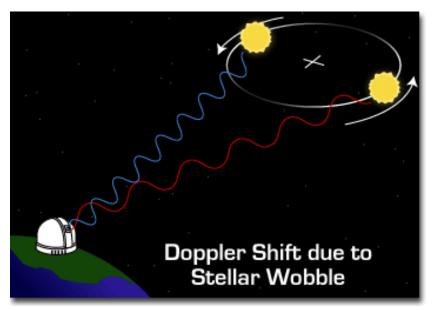
- Requires a Sample from Planet or Meteorite
 - Known or Presumed History

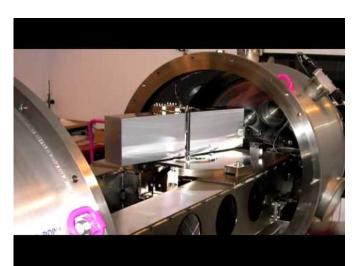
Solar Nebula Hypothesis

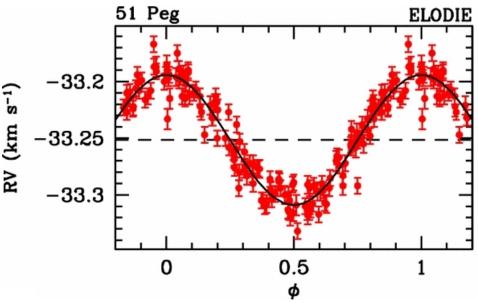

- Flattened Solar Nebula
 - High Angular Momentum
- Temperature Gradient with Radius
 - Heating of Terrestrial Planet Material
 - "Snow Line" of Condensation
- Most Planets Formed Near Their Current Orbits (?)
- Intense Cratering Ended After ~ 1Byrs
 - Lunar Maria
 - Martian Volcanoes
- Unanswered Questions
 - Origin of the Kuiper Belt?
 - Origin of the Oort Cloud?
 - Origin of Earth's Water?

Solar System

- Dusty Debris Disk Forms as Star Forms
 - Rotationally Flattened (Ang. Mom. Conserved)
 - Temperature and Density Gradient
 - Gas and Dust Condense
 - Ices Condense Further Out (cooler)
 - Silicates Condense in Interior
 - Dust Sticks Together (clumps)
 - Growth Continues Until Gravity is Significant
 - Planetesimals (~ 1km in diameter)
 - Star's Luminosity Increases
 - Inner Disk Swept of Gas
 - Inner Terrestrial Planets with Little Gas, Ice
 - Gas Planets Have Longer Time to Grow (?)

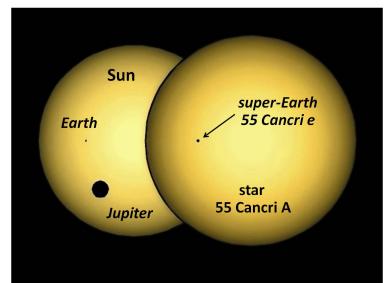

Numerical Models of Planetarium Formation

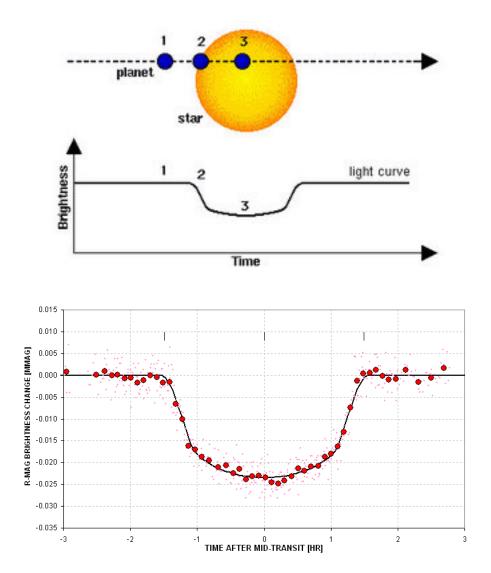



Numerical modeling of Sun and Planetary Disk Formation

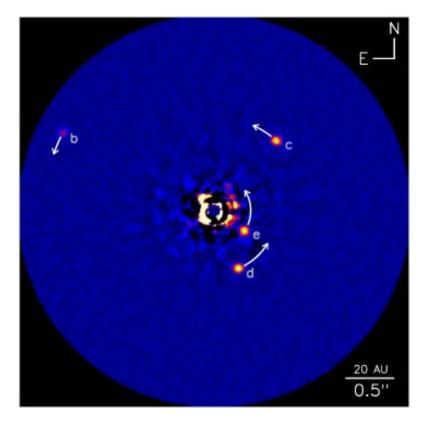
Extrasolar Planet Detection

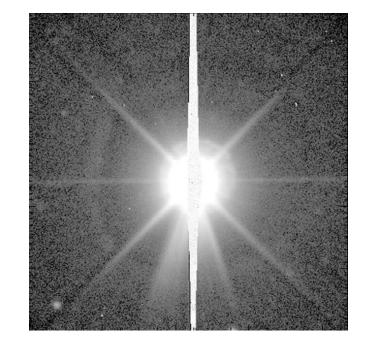
- Radial Velocities
 - Reflex Motion of the Star (2-body problem)
 - Systematic Errors
 Difficult to Control
 - Amplitudes about 50 m/s for Jupiter-class planets
 - Amplitude about 300x smaller for Earth!
 - Unknown Projection





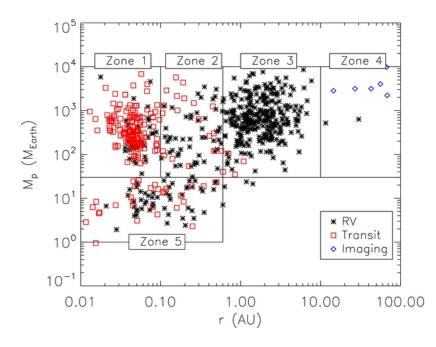
Extrasolar Planet Detection

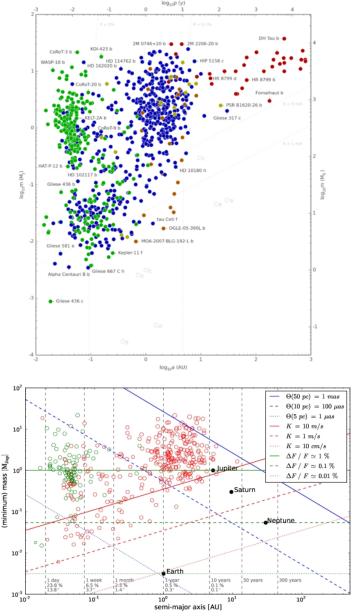

- Planetary Transits
 - Eclipse Means Drop in Star's Brightness
 - Jupiter-class Planets
 Produce Only 0.5% Drop
 - Multi-wavelength Data and Spectra Provide Atmospheric Data
 - Can Detect Only Narrow Range of Inclinations



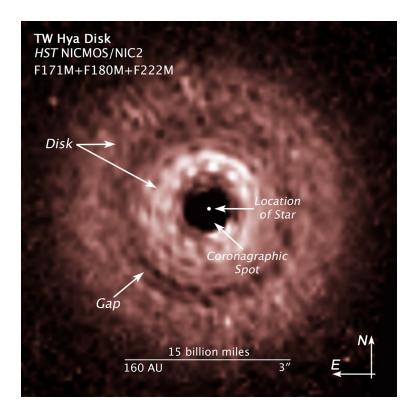
Extrasolar Planet Detection

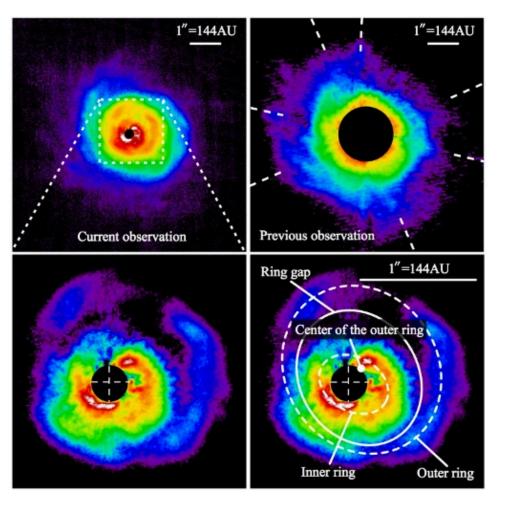
- Direct Detection
 - Supression of Star's Light
 - Star is ~ 10⁶ times brighter!
 - Optical Defects Create "Dazzle" due to Diffraction





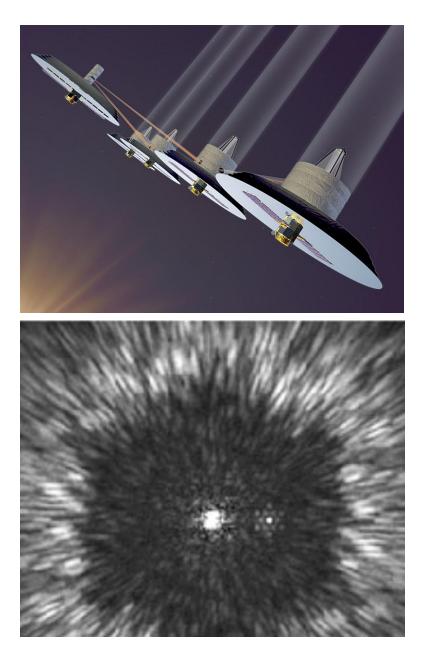
Extrasolar Planet Statistics


- Current Techniques Limited to Massive Planets
 - Early Results Revealed Jupiter Mass Planets Very Close to Star "Hot Jupiters"
 - Moderate-sized Planets Common
 - Earth-mass Planets Just Being Detected
 - Stars Found with Several Planets



Extrasolar Planetary Systems

- Some Stars Have Debris Disks
 - Infrared Excess
 - Disks are Common Around Young Stars
 - Gaps Suggestive of Planets



Future of Extrasolar Planet Detection

Future Detection Techniques

- Space-based Interferometry
- Specialized Supression
 Techniques
- Terrestrial Planet Finder
 Designed to Detect Earth-like
 Planets
- Next Generation Large
 Telescopes will Enable
 Atmospheric Spectroscopy

