Astr 2310 Thurs. May 1, 2014 Today's Topics

- Chapter 8: The Solar System in Perspective
- Planets within the Solar System
- Equilibrium Temperatures
- Retention of Atmosphere
- Physical and Orbital Properties
- Trends in Composition
- Origin of the Solar System
- Nebular Hypothesis
- Open Questions
- How Unique is the Solar System
- Detecting Exoplanets
- Detection Techniques
- Initial Discoveries
- Selection Effects
- Future Trends

Chapter 8: Homework

Chapter 8: \#1, 2, 3, 4, 7

- Due Thursday May 1

Chapter 8: The Solar System in Perspective

- Planets within the Solar System
- Planetary Orbits in Nearly the Same Plane
- Sun's Equator Close to the Plane
- Planetary Orbits Nearly Circular
- Orbital Angular Momentum Vectors Aligned
- Rotational Angular Momentum Vectors Mostly Aligned
- Orbital Debris Also Nearly Planar Orbits
- Decreasing Mean Density with Radius
- Chemical Composition with Radius
- Differentiation Implies Melting of Terrestrial Planets
- Evidence for Intense Early Bombardment

Equilibrium Temperature for Planets

A Planet Must Be in Thermal Equilibrium or its Temperature will Rise or Fall.
It Must Radiate as Much Energy as it Receives from the Sun:
Energy Received is the Flux from the Sun Times the Planet's Cross Section Times (1-A):
$W(r)=\frac{L_{o}}{4 \pi r^{2}}\left(\pi R_{p}^{2}\right)(1-A) \quad$ where r is the planet's distance from the Sun and R_{p} is its radius The Energy Radiated by the Planet is the Radiant Power per Meter ${ }^{2}$ Times its Surface Area: $L_{p}=4 \pi R_{p}^{2} \sigma T_{p}^{4} \quad$ and so if we set these equal:
$\frac{L_{\circ}}{4 \pi r^{2}}\left(\pi R_{p}^{2}\right)(1-A)=4 \pi R_{p}^{2} \sigma T_{p}^{4} \quad$ and so if we solve for T :
$T_{p}=\left[\frac{L_{o}}{16 \sigma \pi r^{2}}(1-A)\right]^{1 / 4}$ but we can simplify this further by substituting for L_{o} :
$L_{\circ}=4 \pi R_{\circ}^{2} \sigma T_{\circ}^{4} \quad$ and so we then have:
$\mathrm{T}_{p}=\left(\frac{R_{o}}{r}\right)^{1 / 2}\left(\frac{1-A}{4}\right)^{1 / 4} T_{\circ}$ and then when we insert numbers for the Sun:
$T_{p} \approx 279^{\circ} K(1-A)^{1 / 4}\left(\frac{r}{1 A U}\right)^{-1 / 2}$ and a couple of special cases are:

1) If the planet is fully absorbing $(\mathrm{A}=0)$ the equilibrium blackbody temperature is:
$T_{b b} \approx 279^{\circ} K\left(\frac{r}{1 A U}\right)^{-1 / 2}$
2) If the planet is slowly rotating the $1 \mathrm{~m}^{2}$ with the Sun directly overhead:
$\frac{L_{o}}{4 \pi r^{2}}(1-A)=\sigma T_{p}^{4} \quad$ and so we can define the sub-solar temperature as:
$T_{s s}=\left(\frac{R_{\mathrm{o}}}{r}\right)^{1 / 2}(1-A)^{1 / 4} T_{\circ}$ and putting in tthe Sun's numbers gives:
$T_{s s} \approx 395^{\circ} K(1-A)^{1 / 4}\left(\frac{r}{1 A U}\right)^{-1 / 2}$

Atmospheric Retention for Planets

Statistical Mechanics Used to Compute the Velocity Distribution Function for Molecules Derivation is Complicated so We Give Only Results, the Boltzmann Distribution:
$f(v)=4 \pi\left[\frac{m}{2 \pi k T}\right]^{3 / 2} v^{2} e^{-m v^{2} k T} \quad$ The distribution can be integrated and differentiated:
$v_{p}=\sqrt{\frac{2 k T}{m}}$ (most probable speed) with $\langle v\rangle=\frac{2}{\sqrt{\pi}} v_{p}$ and $\sqrt{\left\langle v^{2}\right\rangle}=\sqrt{\frac{3}{2}} v_{p}$
If the escape velocity of a planet is less than about $10 \mathrm{x}\langle v\rangle$ the planet will evaporate atm. in 10^{9} years.

Maxwell-Boltzmann Molecular Speed Distribution for Noble Gases

Why Some Atmospheres are Lost

- Compare velocity of gas atoms ($\mathrm{V}_{\text {gas }}$) to planet's escape velocity $\mathrm{V}_{\text {esc }}$
- If any significant \# of atoms have escape speed atmosphere will eventually be lost
- In a gas the atoms have a range of velocities, with a few atoms having up to about $10 \times$ the average velocity, so we need $10 \times \mathrm{V}_{\text {avg gas }}<\mathrm{V}_{\text {esc }}$ to keed atmosshere for 4.5 billion years.

$$
V_{\text {Avg Gas }}=\sqrt{\frac{3 k T}{m}} \quad V_{\text {Escape }}=\sqrt{\frac{2 G M}{R}}
$$

- In above equations $\mathbf{R}=$ planet radius, $\mathbf{M}=$ planet mass, $\mathbf{T}=$ planet temperature,
$\mathrm{m}=$ mass of atom or molecule, k and \boldsymbol{G} are physical constants
- Big planets have larger $\mathrm{V}_{\text {esc }}$ (i.e. larger $M / R \propto R^{3} / R$) so hold atmospheres better
- Earth would retain an atmosphere better than Mercury or the Moon
- Cold planets have lower $\mathrm{V}_{\text {gas }}$ so hold atmospheres better
- Saturn's moon Titan will hold an atmosphere better than our moon
- Heavier gasses have lower $\mathrm{V}_{\text {gas }}$ so are retained better than light ones
- CO_{2} or O_{2} retained better than $\mathrm{He}, \mathrm{H}_{2}$, or H
- Even with "heavy" gasses like we $\mathrm{H}_{2} \mathrm{O}$ we need to worry about loss of H if solar UV breaks $\mathrm{H}_{2} \mathrm{O}$ apart. That is what happens on Venus.

Which Planets can Retain which Gasses?

- Jovian Planets
- can retain all gasses
- Earth and Venus
- can retain all except \mathbf{H}_{2}
- Cold trap on Earth preserves our H
- Mars
- can retain CO_{2}
- barely retains $\mathrm{H}_{2} \mathrm{O}$
- Titan and Triton
- only moons which can retain atmospheres

Age Dating Planetary Surfaces

The Most Reliable Method for Age-Dating Uses Radioactive Decay (see Ch. 9) A Radioactive Isotope has an Unstable Nucleus Which Ejects a Particle or Photon ${ }_{92}^{235} \mathrm{U} \rightarrow{ }_{90}^{231} \mathrm{Th}+{ }_{2}^{4} \mathrm{He} \quad$ but eventually resulting in ${ }_{82}^{206} \mathrm{~Pb}$ but Pb is found in nature so we have to account for the natural amount in a particular mineral that also has U (hard).
But if we can measure the decay (daughter) product and we know the decay rate we can compute the elapsed time:
$d N=-\lambda N d t \quad[$ number of decays depends on number of nuclei (N) and the decay rate $(\lambda)]$
$\frac{d N}{N}-\lambda d t$ and so integrating we have:
$\ln [N(t)]-\ln [N(0)]=-\lambda t$ and so:
$\frac{N(t)}{N_{0}}=e^{-\lambda t}$ or $N(t)=N_{0} e^{-\lambda t} \quad$ [number decreases (decays) exponentially]
The half-life (τ) is the time for half of the radioactive isotope to decay:
$N(t)=N_{0} e^{-\left(\ln 2 \frac{t}{\tau}\right)}$ for ${ }_{92}^{235} U$ the half-life is 700×10^{6} years.

- Requires a Sample from Planet or Meteorite
- Known or Presumed History

Solar Nebula Hypothesis

- Flattened Solar Nebula
- High Angular Momentum
- Temperature Gradient with Radius
- Heating of Terrestrial Planet Material
- "Snow Line" of Condensation
- Most Planets Formed Near Their Current Orbits (?)
- Intense Cratering Ended After ~ 1Byrs
- Lunar Maria
- Martian Volcanoes
- Unanswered Questions
- Origin of the Kuiper Belt?
- Origin of the Oort Cloud?
- Origin of Earth's Water?

Standard Model for Formation of the

Solar System

- Dusty Debris Disk Forms as Star Forms
- Rotationally Flattened (Ang. Mom. Conserved)
- Temperature and Density Gradient
- Gas and Dust Condense
- Ices Condense Further Out (cooler)
- Silicates Condense in Interior
- Dust Sticks Together (clumps)
- Growth Continues Until Gravity is Significant
- Planetesimals ($\sim 1 \mathrm{~km}$ in diameter)
- Star's Luminosity Increases
- Inner Disk Swept of Gas
- Inner Terrestrial Planets with Little Gas, Ice
- Gas Planets Have Longer Time to Grow (?)

Numerical Models of Planetarium Formation

Numerical modeling of Sun and Planetary Disk Formation

Extrasolar Planet Detection

- Radial Velocities
- Reflex Motion of the Star (2-body problem)
- Systematic Errors Difficult to Control
- Amplitudes about $50 \mathrm{~m} / \mathrm{s}$ for Jupiter-class planets
- Amplitude about 300x smaller for Earth!
- Unknown Projection

Extrasolar Planet Detection

- Planetary Transits
- Eclipse Means Drop in Star's Brightness
- Jupiter-class Planets Produce Only 0.5\% Drop
- Multi-wavelength Data and Spectra Provide Atmospheric Data
- Can Detect Only Narrow Range of Inclinations

Extrasolar Planet Detection

- Direct Detection
- Supression of Star's Light
- Star is $\sim 10^{6}$ times brighter!
- Optical Defects Create "Dazzle" due to Diffraction

Extrasolar Planet Statistics

- Current Techniques Limited to Massive Planets
- Early Results Revealed Jupiter Mass Planets Very Close to Star "Hot Jupiters"
- Moderate-sized Planets Common
- Earth-mass Planets Just Being Detected
- Stars Found with Several Planets

Extrasolar Planetary Systems

- Some Stars Have Debris Disks
- Infrared Excess
- Disks are Common Around Young Stars
- Gaps Suggestive of Planets

Future of Extrasolar Planet Detection

- Future Detection Techniques
- Space-based Interferometry
- Specialized Supression Techniques
- Terrestrial Planet Finder Designed to Detect Earth-like Planets

- Next Generation Large Telescopes will Enable Atmospheric Spectroscopy

