Chapter 18: Thermal Properties of Matter

- What is "mole"; and what is "molar mass"?
- How to describe the status of a gas? And what is "ideal gas"?
- What is the origin of the "pressure"?
- How do we know the specific heat for ideal gas?
- Do all the air molecules move with the same speed?
- What is "phase diagram"?

Confusing Notations (don't be confused):

- N: number of molecules
- *n*: number of moles
- N_A : Avogadro's number: 6.02×10^{23} .
- *M*: molar mass (how much mass per mole)
- m: mass of "ONE" molecule
- m_{total} : total mass
- p: pressure
- P: momentum

What is "mole"; and what is "molar mass"?

- I have 2.5 dozens of identical coins with total weight of 300 g.
 How much weight does one dozen of coins have? How much weight does one coin have?
- I have 2.5 moles of identical molecules with total weight of 300 g. How much weight does one mole of molecules have? How much weight does one molecule have?
- A "dozen" refers to "12" objects. $\$_{dozen} = 12 \$_1$ $\$_{total} = n \$_{dozen}$

of dozens

• A "mole" refers to "6.02 x 10^{23} " objects (we use N_A to represent 6.02 x 10^{23})

$$m_{total} = nM$$

Molar mass

Single molecule mass

Equation of State

Parameters for describing a gas

- Volume
- Pressure
- Temperature
- Number of molecules (number of moles)

Simplest model: Linear response model:

$$V = V_0 [1 + \beta (T - T_0) - k(p - p_0)]$$

Is this model good enough?

Equation of State

From experiments:

- *V* is proportional to *n*
- V is proportional to 1/p
- *p* is proportional to *T*

$$pV = nRT$$

 $R = 8.314472 J/mol \cdot K$

$$R = 0.08206 \frac{L \cdot atm}{mol \cdot K}$$

$$pV = \frac{m_{total}}{M}RT$$

$$pM = \rho RT$$

Unit of Pressure

	Pascal	Bar	Standard atmosphere	Torr	Pounds per square inch
	(Pa)	(bar)	(atm)	(Torr)	(psi)
1 Pa	≡ 1 N/m ²	10 ⁻⁵	9.8692×10 ⁻⁶	7.5006×10 ⁻³	1.450377×10 ⁻⁴
1 bar	10 ⁵	≡ 100 kPa≡ 10 ⁶ dyn/cm ²	0.98692	750.06	14.50377
1 atm	1.01325×10 ⁵	1.01325	1	≡ 760	14.69595
1 Torr	133.3224	1.333224×10 ⁻³	≡ 1/760 ≈ 1.315789×10 ⁻³	≡ 1 Torr≈ 1 mmHg	1.933678×10 ⁻²
1 psi	6.8948×10 ³	6.8948×10 ⁻²	6.8046×10 ⁻²	51.71493	≡ 1 lbf /in²

Question

An "empty" aluminum scuba tank contains 11.0 L of air at 21 °C and 1 atm. When the tank is filled rapidly from a compressor, the air temperature is 42 °C and the gauge pressure is $2.1 \times 10^7 Pa$. What mass of air was added? (Air has the average molar mass of 28.8 g/mol)

How to describe the status of a gas? And what is "ideal gas"?

Ideal gas:

- (1) no inter-molecular interactions (each gas molecule does not feel the others);
- (2) no volume (each gas molecule is considered as a "point mass" particle)

Corrections for non-ideal gas (van der Waals Equation):

$$(p + \frac{an^2}{V^2})(V - nb) = nRT$$

p-V diagram

Ideal Gas Non-Ideal Gas

• What is "pressure"?

$$p = \frac{F}{A}$$

Where does "Force" come from?

Air molecules hitting/bouncing the wall

Let's look at one molecule:

$$F_{x} = \frac{\Delta P_{x}}{\Delta t}$$

- How many molecules hitting the wall within a certain time period?
- Molecules with v_x within a volume could hit the wall

$$V_{hit} = A|v_x|\Delta t$$

Numbers of molecules that hit the wall:

$$N_{hit} = \frac{1}{2} \frac{N}{V} V_{hit} = \frac{1}{2} \frac{N}{V} A |v_x| \Delta t$$

Momentum change of one molecule that hit the wall

$$\Delta P_{\chi} = 2m|v_{\chi}|$$

Sum of momentum changes of all molecules that hit the wall

$$\Delta P_{x,total} = N_{hit} \Delta P_x = 2m|v_x| \frac{1}{2} \frac{N}{V} A|v_x| \Delta t = m|v_x^2| \frac{N}{V} A \Delta t$$

Total force due to the molecule collisions

$$F = \frac{\Delta P_{x,total}}{\Delta t} = m|v_x^2| \frac{N}{V} A$$

Pressure on the wall

$$p = \frac{F}{A} = m|v_x^2| \frac{N}{V}$$

Average v_x vs v

$$v^{2} = v_{x}^{2} + v_{y}^{2} + v_{z}^{2}$$

$$(v^{2})_{av} = (v_{x}^{2})_{av} + (v_{y}^{2})_{av} + (v_{z}^{2})_{av} = 3(v_{x}^{2})_{av}$$

$$(v_{x}^{2})_{av} = \frac{1}{3}(v^{2})_{av}$$

Pressure on the wall

$$p = m|v_x^2| \frac{N}{V} = m\frac{1}{3}|v^2| \frac{N}{V}$$

$$p = \frac{21}{32}m|v^2| \frac{N}{V} = \frac{2}{3}E_k \frac{N}{V} = \frac{2}{3}\frac{K_{tr}}{V}$$

Average kinetic energy of ONE molecule

Total kinetic energy of ALL molecules

$$pV = \frac{2}{3}E_k N = \frac{2}{3}K_{tr} = nRT$$

$$K_{tr} = \frac{3}{2} nRT$$

$$E_k = \frac{3}{2}kT$$

$$n = \frac{N}{N_A}$$

$$k = \frac{R}{N_A}$$

Kinetic energy of molecules vs Temperature

$$K_{tr} = \frac{3}{2} nRT = N E_k$$

Total kinetic energy of all molecules

$$E_k = \frac{3}{2} kT = \frac{1}{2} m (v^2)_{av}$$

Average kinetic energy of one molecule

Root-mean-square speed (rms speed)

$$v_{rms} = \sqrt{(v^2)_{av}} \qquad \longrightarrow \qquad v_{rms}^2 = (v^2)_{av}$$

$$\frac{3}{2}kT = \frac{1}{2}mv_{rms}^2 \qquad v_{rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}}$$

Summary

 Average kinetic energy of single molecule on depends on temperature

$$E_k = \frac{3}{2}kT$$

 Root-mean-square speed depends on both temperature and molecular mass

$$v_{rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}}$$

Question

- (a) What is the average translational kinetic energy of an ideal-gas molecule at 27 °C?
- (b) What is the total random translational kinetic energy of the molecules in 1 mole of this gas?
- (c) What is the root-mean-square speed of oxygen molecules at this temperature?

How do we know the specific heat for ideal gas?

Recall from Ch 17: Molar heat capacity

$$C = \frac{1}{n} \frac{dQ}{dT} \qquad \qquad \Delta Q = n C \Delta T$$

There are two types of Molar heat capacity

$$C_V = \frac{1}{n} \left(\frac{dQ}{dT}\right)_{constant \ volume}$$

$$C_p = \frac{1}{n} \left(\frac{dQ}{dT} \right)_{constant \ pressure}$$

How do we know the specific heat for ideal gas?

 For ideal gas, if you add heat into the system, where does the heat go?

$$\Delta Q = \Delta K_{tr}$$

$$\Delta Q = n C_V \Delta T \qquad K_{tr} = \frac{3}{2} nRT$$

$$\Delta Q = n C_V \Delta T = \frac{3}{2} nR \Delta T$$

$$C_V = \frac{3}{2}R$$

Equipartition of Energy principle

Where does this "3" come from?

$$C_V = \frac{3}{2} R \qquad (v_x^2)_{av} = \frac{1}{3} (v^2)_{av}$$

$$E_{k} = \frac{1}{2}m(v^{2})_{av} = \frac{1}{2}m((v_{x}^{2})_{av} + (v_{y}^{2})_{av} + (v_{z}^{2})_{av}) = E_{k,x} + E_{k,y} + E_{k,z}$$

One degree of freedom gives one equipartition of energy

$$C_V = \frac{dof}{2}R$$

What is "degree of freedom"?

Monatomic vs Diatomic molecules

Degree of freedom vs C_V

Translation: dof: 3

Rotation: dof: 2 Vibration: dof: 2

What is "degree of freedom"?

- Kinetic energy
 - x, y, and z
- Potential energy (vibration)
 - x, y, and z

$$dof = 6$$

$$C_V = \frac{6}{2}R$$

- Kinetic energy
- Rotational energy
- Vibration energy

Do all the air molecules move with the same speed?

$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-mv^2/2kT}$$

$$v_{mp} = \sqrt{\frac{2kT}{m}}$$

$$u_{av} = \sqrt{\frac{8kT}{\pi m}}$$

$$v_{rms} = \sqrt{\frac{3kT}{m}}$$

Speeds

$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-mv^2/2kT}$$

•
$$\frac{df(v)}{dv} = 0$$
 Solve for v_{mp}

$$v_{av} = \int_0^\infty v f(v) dv$$

$$v_{rms} = \sqrt{\int_0^\infty v^2 f(v) dv}$$

What is "phase diagram"?

What is "phase diagram"?

What is "phase diagram"?

