Constants:

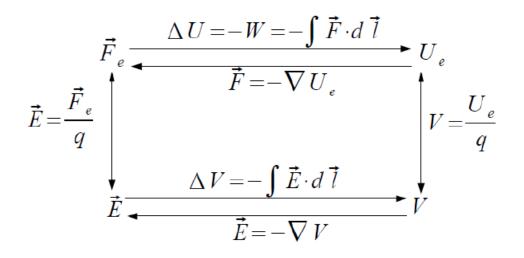
$$e = 1.6 \times 10^{-19} C; \epsilon_0 = 8.85 \times 10^{-12} C^2 / Nm^2; k = \frac{1}{4\pi\epsilon_0} = 9.0 \times 10^9 N \cdot m^2 / C^2; \mu_0 = 4\pi \times 10^{-7} T \cdot m / A$$

Unit conversion:

 $eV = 1.6 \times 10^{-19} J$; Magnetic field is: tesla ($1T = 1 N/A \cdot m$); Magnetic flux: weber ($1Wb = 1T \cdot m^2 = 1 N \cdot m/A$)

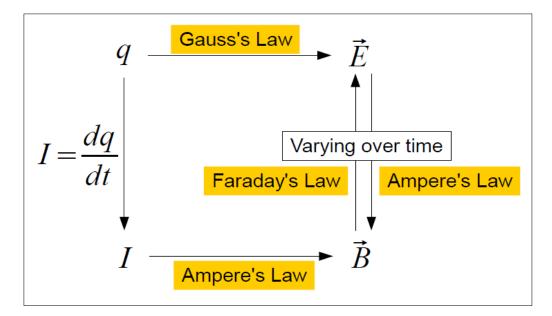
Formulas

- $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$ Electric potential due to a point charge
- $C = \frac{Q}{V}$ Capacitance
- $C_{eq} = C_1 + C_2$ Equivalent capacitance of two parallel connected capacitors
- $\frac{1}{c_{eq}} = \frac{1}{c_1} + \frac{1}{c_2}$ Equivalent capacitance of two series connected capacitors
- $U = \frac{1}{2}QV$ Energy stored in capacitor
- $K = \frac{\varepsilon}{\varepsilon_0}$ Dielectric constant of a material.
- $R = \rho \frac{L}{A}$ (resistivity); $R = \frac{V}{I}$ (Ohm's law); $R(T) = R_0 [1 + \alpha (T T_0)]$ (temperature dependent resistance)


•
$$\vec{F}_m = q \vec{v} \times \vec{B}$$
; $d \vec{F} = I d \vec{l} \times \vec{B}$

• $\vec{\tau} = I \vec{A} \times \vec{B}$ (magnetic torque for a current-carrying loop in magnetic field)

•
$$\vec{\mu} = I \vec{A}$$
 (magnetic dipole moment); $\vec{\tau} = \vec{\mu} \times \vec{B}$; $U_m = -\vec{\mu} \cdot \vec{B}$
 $d \vec{B} = \frac{\mu_0}{4\pi} \frac{I d \vec{l} \times \hat{r}}{r^2}$


• Magnetic field produced by a circular current loop: $\vec{B} = \frac{\mu_0 I a^2}{2(x^2 + a^2)^{3/2}} \hat{i}$ (on the axis of a circular loop who axis is aligned along \hat{i}) $\epsilon = \frac{-d \Phi_B}{dt}$

• Relationships among \vec{F} , \vec{E} , U, and V

Maxwell's equations

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{encl}}{\epsilon_0}$$
(Gauss's Law for \vec{E})
$$\oint \vec{B} \cdot d\vec{A} = 0$$
(Gauss's Law for \vec{B})
$$\oint \vec{B} \cdot d\vec{l} = \mu_0 (I_{encl} + \epsilon_0 \frac{d \Phi_E}{dt})$$
(Ampere's Law)
$$\oint \vec{E} \cdot d\vec{l} = -\frac{d \Phi_B}{dt}$$
(Faraday's Law)

