4-6. A gold foil of thickness 2.0 μ m is used in a Rutherford experiment to scatter α particles with energy 7.0 MeV. (a) What fraction of the particles will be scattered at angles greater than 90°? (b) What fraction will be scattered at angles between 45° and 75°? (c) Use N_A , ρ , and M for gold to compute the approximate radius of a gold atom. (For gold, $\rho = 19.3$ gm/cm³ and M = 197 gm/mol.)

Answers: (a) 9.8×10^{-5} ; (b) 4.05×10^{-4} ; 16.2 nm

4-13. The radius of the n = 1 orbit in the hydrogen atom is $a_0 = 0.053$ nm. (a) Compute the radius of the n = 6 orbit. (b) Compute the radius of the n = 6 orbit in singly ionized helium (He⁺), which is hydrogenlike, that is, it has only a single electron outside the nucleus.

Answers: (a) 1.91 nm; (b) 0.95 nm.

4-30. An electron in the K shell of Fe is ejected by a high-energy electron in the target of an x-ray tube. The resulting hole in the n=1 shell could be filled by an electron from the n=2 shell, the L shell; however, instead of emitting the characteristic Fe K_{α} x ray, the atom ejects an Auger electron from the n=2 shell. Using Bohr theory, compute the energy of the Auger electron.

Answers: 3.118 keV

4-40. Three isotopes of hydrogen occur in nature; ordinary hydrogen, deuterium, and tritium. Their nuclei consist of, respectively, 1 proton, 1 proton and 1 neutron (deuteron), and 1 proton and 2 neutrons (triton). The masses of the three nuclei are given in Table 11-1. (a) Use Equation 4-26 to determine Rydberg constants for deuterium and tritium. (b) Determine the wavelength difference between the Balmer α lines of deuterium and tritium. (c) Determine the wavelength difference between the Balmer α lines of hydrogen and tritium.

Answers: (a) $R_d=1.0970743\times 10^7 m^{-1}$; $R_t=1.0971736\times 10^7 m^{-1}$; (b) $\lambda_d-\lambda_t=5.3978\times 10^{-2}nm$; (c) $\lambda_H-\lambda_t=2.4627\times 10^{-1}nm$

4-50. Figure 3-15b shows the K_{α} and K_{β} characteristic x rays emitted by a molybdenum (Mo) target in an x-ray tube whose accelerating potential is 35 kV. The wavelengths are $K_{\alpha} = 0.071$ nm and $K_{\beta} = 0.063$ nm. (a) Compute the corresponding energies of these photons. (b) Suppose we wish to prepare a beam consisting primarily of K_{α} x rays by passing the molybdenum x rays through a material that absorbs K_{β} x rays more strongly than K_{α} x rays by photoelectric effect on K-shell electrons of the material. Which of the materials listed in the accompanying table with their K-shell binding energies would you choose? Explain your answer.

Element	Zr	Nb	Мо	Тс	Ru
Z	40	41	42	43	44
$E_K (\text{keV})$	18.00	18.99	20.00	21.04	22.12

Answers: (a) $E_{\alpha} = 17.465 \ keV$; $E_{\beta} = 19.683 \ keV$; (b) Nb