
1 Intro: Simple Wollaston Methods

Consider a star intrinsically polarized where

q =
Q

I
=

I0 − I90
I0 + I90

=
1− β

1 + β
so I90 = βI0 and β =

1− q

1 + q

2 Photometric

2.1 Method 1

Now, introduce a throughput coefficient to account for the different response
between the two sides of the Wollaston. Let the left side be A and the right
side be B and let B = αA when q = 0. Now let SET 1 be HWP = 0◦

and SET 2 be HWP = 45◦, swapping I0 and I90. We are assuming α is not
dependent on the HWP position!

Define the measured qm as:

qm =
(A1 − B1)− (A2 −B2)

A1 +B1 + A2 +B2
=

1− αβ − β + α

1 + αβ + β + α

Substituting in for β in terms of q and some algebra we have:

qm =
2q + 2αq

2 + 2α
= q

Thus the measured qm is the same value as the intrinsic q, independent
of α.
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2.2 Method 2

One might be tempted to form a q for each SET independently then take
half the difference, but this does not work as well. For example:

For SET 1 we have:

q1 =
A1 − B1

A1 +B1
=

I0 − αI90
I0 + αI90

=
1− αβ

1 + αβ

and for SET 2 we have:

q2 =
A2 − B2

A2 +B2

=
I90 − αI0
I90 + αI0

=
β − α

β + α

Now define the measured qm as half the difference between these computed
’q’s:

qm =
1

2
(q1 − q2) =

1

2

[(
1− αβ

1 + αβ

)
−
(
β − α

β + α

)]
=

α(1− β2)

α(1 + β2) + β(1 + α2)

After substituting in for β in terms of q and some algebra:

qm =
4q

(1 + α)2 − q2 (1− α)2

Solving for q we have:

q =
4±

√
16 + 4q2m (1 + α)2

2qm

If qm << 1 then:

q ≈ 1

4
qm(1 + α)2

If α ≈ 1 as well, then:

q ≈ αqm

Thus, the measured value for the fractional polarization is not the intrinsic
value and is not independent of α!
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3 Non-Photometric

In the preceding, we assumed that SET 1 and SET 2 had the same response
conditions. That is, if q = 0, then A1 = A2 and B1 = B2. What if the
response changed between the two positions of the HWP due to, say, clouds?
Here we introduce yet another factor, γ, to represent the change in through-
put between SET 1 and SET 2. The definition of qm from Section 2.1 is
now:

qm =
(1− αβ)− γ(β − α)

(1 + αβ) + γ(β + α)

Substituting for β in terms of q and solving for q we have the following
big mess:

q =
1− α− γ + αγ − qm(1 + α + γ + αγ)

qm(1− α− γ + αγ)− (1 + α + γ + αγ)
=

C1 − qmC2

qmC1 − C2

where

C1 = 1− α− γ + αγ
C2 = 1 + α + γ + αγ

Note that if either α = 1 or γ = 1, then C1 = 0 and q = qm, as expected.
However, if this is not the case and β = 1, i.e. no intrinsic polarization, then
qm is:

qm =
(1− α)(1− γ)

(1 + α)(1 + γ)
�= q = 0

which is VERY BAD if α and γ are significantly different from 1. So,
lets reconsider Method 2 from Section 2.2 with our factor of γ now included.
We have

qm =
1

2
(q1 − q2) =

1

2

[(
1− αβ

1 + αβ

)
−
(
γβ − γα

γβ + γα

)]

The factor of γ of course cancels and we are left with the same value for qm
as before using Method 2. If the weather sucks and you can roughly estimate
α, you are better off with Method 2! In fact, simply using α = B1/A1 has
errors only in second order in q. You could also iterate on α by removing
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your first calculation of β (from q) from your initial estimate of α. This
would proceed as follows:

Start with α1

α1 =
B1

A1
= αβ

Compute q1 and get β1 from this value. Now set a new value for α2

α2 =
B1

β1A1

Using the value for α from just this one iteration will result in errors
that now appear only in third order in q. Note this only works for weakly
polarized, high S/N sources. However, you could use such a source to get
a handle on α in the first place. Of course, you can also use observations
of unpolarized standards plus some sort of flat fielding to get a value for
α as well. Whatever the case, Method 2 will be your best bet if the sky
transmission is iffy.
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