Manned/Unmanned spacecraft

Novice

- Awareness that humans and robots have explored the surfaces of the terrestrial planets, some of the moons of the gas giants, some comets, and some asteroids.
- US missions include Gemini, Mercury, Apollo, and the Space Shuttle.
- Russian missions include Sputnik, Soyuz, Vostok, and Luna.
- Humankind has had a continuous presence in space aboard the ISS since November 2000.
- Spaceflight has benefited from both competition between the USA and the USSR during the Cold War, and from collaboration in the modern era.
- Current missions include the ISS, New Horizons to Pluto and the Kuiper Belt, and the Mars rovers Curiosity and Opportunity.

Intermediate

- Identify major goals of some missions.
- Science and engineering complement each other in the cycle known as research and development (R&D).
- Voyager 1 and 2 are the only missions that have left the Solar System. Travel to even the next nearest star (Proxima Centauri) is prohibitively long.
- The energy source of a mission depends on how close it is to the Sun closer missions allow for solar power, while further missions use radioisotope thermoelectric generators (RTGs).

Expert

- Critically analyze Moon Hoax Conspiracy Theory claims.
- Ideas for future interstellar travel, such as generation ships, solar sails, plasma drives, and sci-fi ideas such as wormholes and warp drives.
- Spacecraft don't directly follow Kepler's Laws due to propulsion.
- Thrust is governed by conservation of momentum.

Related NGSS

Grade Level	Student Performance Expectations
3-5	3-5 ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. 3-5 ETS1-2.

	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
	3-5 ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
MS	MS-PS1-4 Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.
	MS-PS3-3 Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
HS	HS-ESS1-4 Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.
	HS-PS3-5 Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

Related CCSSM

See content sheets on Distance, Exoplants, Kepler's Laws, Light, Robotics, and Thermoelectrics.