Name	
	Spring 2015

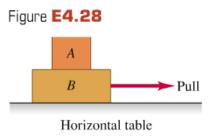
Discussion 3 – Forces

Equations

$$\sum \vec{F} = m\vec{a}$$
$$F_g = mg$$

My Problem Solving Approach (for Forces)

- 1. Draw a picture
 - a. Sketch the whole thing
 - b. FBD each object separate with only its forces on it
 - c. Draw expected acceleration on the side in a different color
 - d. Draw xy-axes aligned with the acceleration, on the side in a third color
- 2. "F=ma"
 - a. List all the forces on object 1 in the x-direction and its acceleration
 - b. Separately repeat for object 1 in the y-direction
 - c. Object 2 in x-direction
 - d. Object 2 in y-direction
 - e. Apply Newton's Law of Forces
- 3. Do Math
- 4. Sanity Check


Problems

Young & Freedman, 13e

4.19 • At the surface of Jupiter's moon Io, the acceleration due to gravity is $g = 1.81 \text{ m/s}^2$. A watermelon weighs 44.0 N at the surface of the earth. (a) What is the watermelon's mass on the earth's surface? (b) What are its mass and weight on the surface of Io?

1

4.28 •• A person pulls horizontally on block *B* in Fig. E4.28, causing both blocks to move together as a unit. While this system is moving, make a carefully labeled free-body diagram of block *A* if (a) the table

is frictionless and (b) there is friction between block B and the table and the pull is equal to the friction force on block B due to the table.

4.4 • A man is dragging a trunk up the loading ramp of a mover's truck. The ramp has a slope angle of 20.0° , and the man pulls upward with a force \vec{F} whose direction makes an angle of 30.0° with the ramp (Fig. E4.4). (a) How large a force \vec{F} is necessary for the component F_x parallel to the

ramp to be 60.0 N? (b) How large will the component F_y perpendicular to the ramp then be?

c) Assuming no friction and a trunk mass of 24.5 kg, what is the acceleration of the trunk?