
Physics 1210
General guidelines for experiment reports

1) Reports should be typed and include tables and graphs, as appropriate, to demonstrate the work 
and support the conclusions.  

2) Reports should include the names of all persons contributing to the work, but should be written 
by the lead author.  Each person should complete their own report.

3) Matlab scripts used to make plots or do computations should be included as an appendix
4) There are no particular font or margins or pages requirements
5) A complete report should include

• An Abstract stating the main goal, the methods, and the main result or finding.
• A short Introduction describing why the experiment is being performed
• A Methods & Data section that describes the experimental setup in both words and with 

appropriate graphics.  This section may also include formulae or derivations needed to 
demonstrate the objectives of the experiment.  The data section should also include 
tables of data or derived parameters.  

• An Analysis section interpreting the data.  This section may also talk about the precision 
of the results achieved and the main sources of error or uncertainty.  This section should 
include graphs or figures that help interpret the data.  Equations or derivations using 
basic data to compute other parameters may also be included here.   

• A Results & Conclusions section describing what worked well or what could be changed 
to achieve better results in the future if the equipment or the goals were slightly 
different. 

• An Appendix (or Appendices), which includes work performed but perhaps not essential 
to the main body of the report.  Things such as Matlab scripts used to make plots should 
be included in the Appendix.   

6) Even though you share data with your group and your data tables may look the same, each 
report should be unique, reflecting the writing and thinking of each author.  

7) The text of the report should follow standard English grammar, punctuation and sentence 
structure.  

8) Grading of experimental reports will follow the rubric distributed to the class
9) An example of a well-written report follows
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Measuring an Acceleration
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B.A. Helper, M.Y. Partner, A. Dude 

Abstract

We measured the acceleration of a HotWheels car down an incline of 
constant slope.  Observers recorded the distance traveled by the car at 
time intervals of 0.5 seconds over the four seconds required for the car to 
reach the bottom of the ramp.  The position-time data were used to 
compute the average velocity in each of eight 0.5-second time intervals. 
We then used the change in velocity over each 0.5-second time interval to 
compute the acceleration.  Our average acceleration over the eight 
intervals was 0.469 m/s2 with a standard deviation of 0.099 m/s2.     

Introduction

Acceleration is a change in the velocity of an object.  Generally, an average acceleration may be 
expressed as a change in velocity, ∆v, over some time interval, ∆ t.  

                                               aavg=
Δ v
Δ t

Or, in the limit that ∆ t goes to zero,
                                                     

aavg=
d v
d t

Measuring an acceleration, therefore, requires measuring a change in the position of an object and 
timing the duration required for each movement.  In this experiment, we chose to measure the 
acceleration of a race car (really a HotWheels car) down an inclined road (really an orange track).  Our 
goal was to measure the acceleration of the car to a precision of at least 0.01 meters per second squared 
by sing multiple measurements of the car's position over several seconds.     

Methods
We set up  the race track on an inclined slope made by two metal tracks supported by bricks.  Each 
metal track was two meters long, so that they form a solid surface four meters long when placed end-to 
end.  Upon this solid surface we placed several sections of HotWheels track connected together.  The 
track drops roughly 18 inches over four-meter length.  Although we could measure the incline angle to 
be roughly 15 degrees, it was not necessary for this experiment.  Figure 1 below shows the 
experimental setup. 
The metals ramps are 
marked with distance 
in cm along one edge, 
making it easy to 
measure the position 
of the car at any point 
along the ramp.  Figure 1: Schematic of the experimental setup
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We released the car from rest at the top of the ramp with the rear end of the car at the zero mark.  At 
each half second interval (e.g., 0 s,  0.5 s,  1.0 s, etc...) we measured the position of the rear edge of the 
car.   Three or four people measured the position of the car at each time interval.  We found that was 
possible to measure the position to an accuracy of at least 1 cm when the car was moving slowly, and 
each person estimated the position to 1.10 of a cm or 1 mm.   However, once the car was moving more 
quickly, it became harder to measure the position with similar accuracy.  We estimate that the positions 
are accurate to no more than 1 cm.  Because several people took data at each time, we record all of 
their measurements, and we computed an average position at each time in order to help reduce random 
measurement errors.  Table 1 below shows the measurement from each person and the average position 
of the car at each time.     

Analysis

Figure 2 shows a plot of the position of the car 
versus time.  The plot shows that the car moved 
farther in any given time interval as the car 
moved along the ramp.  The shape of the curve 
is roughly that of a parabola.  

We computed the velocity of the car during each 
0.5 s time interval by taking the distance 
traveled, ∆x, divided by the time interval, ∆ t.  

                                 v (m/ s)=
Δ x
Δ t

=
(x2−x1)

(t 2−t1)

For example, after the first 0.5-second time 
interval, the velocity is

              Table 1.  Position, Velocity, Acceleration data

Measured Data Calculated parameters
Distance Distance Distance Distance Distance Avg. Velocity Avg. Acceleration

Time (m) (m) (m) (m) (m) (m/s)
(s) Person 1 Person 2 Person3 Person4 Average

0.00 0.000 0.000 0.000 0.000 0.000 0
0.50 0.065 0.056 0.058 0.069 0.062 0.124 0.248
1.00 0.251 0.262 0.240 0.248 0.250 0.3765 0.505
1.50 0.562 0.540 0.578 0.569 0.562 0.624 0.495
2.00 1.051 1.011 0.980 0.991 1.008 0.892 0.536
2.50 1.569 1.530 1.630 1.590 1.580 1.143 0.502
3.00 2.256 2.267 2.244 2.239 2.252 1.3435 0.401
3.50 3.067 3.040 3.079 3.050 3.059 1.615 0.543
4.00 4.010 4.060 3.950 3.967 3.997 1.8755 0.521

Average 0.469
0.099

(m/s2)

StdDev

Figure 2: Position of the car in meters versus time 
using data from Table 1.



                                 
Δ x
Δ t

=
(0.062−0.000)

(0.5−0.0)
=0.124 m/ s

The 6th column of Table 1 lists the velocities computed in this manner from each time intervals.  Figure 
3 below shows a plot of velocity versus time using the data from Table 1. The trend is a approximately 
a straight line with a positive slope, indicating increasing velocity.  A straight line is consistent with a 
constant acceleration given by the slope of the line.  The average velocity of the entire journey is 

3.997 meters / 4.0 seconds = 1.00 m/s.

However, the instantaneous velocity is 
much smaller during the first portion of 
the experiment and much larger during the 
latter portion. 

Finally, we used the velocity data to 
compute the acceleration during each time 
interval.  The average acceleration was 
computed from

aavg=
Δ v
Δ t

=
(v2−v1)

(t 2−t 1)

 
For the first time interval this yields

(v2−v1)

(t2−t1)
=

(0.124−0.000)

(0.5−0.0)
=0.248m /s2

The computed accelerations appear in Column 7 of Table 1.  The values are relatively constant and fall 
near 0.5 m/s2.  At the bottom of Table 1 we compute the average acceleration over the eight time 
intervals to be 0.469 m/s2 and the standard deviation of this set of data to be 0.099 m/s2.  

Results and Conclusions
We measure the car's acceleration to be a=0.469±0.099 m/s2..  We use this value to compute the 
theoretical distance versus time curve using

                                                      x1=x0+v0 t+
1
2

at 2 ,

where v0=0 is the car's initial velocity and x0=0 is the car's initial position.  Figure 4 shows the position-
time plot of the data (asterisks) and the theoretical position-time curve (solid line).  There is good 
agreement between the data and the curve, suggesting that the stated acceleration is a good 
representation of the car's motion overall.  However, the curve falls increasingly below the data at later 
times, suggesting that we have underestimated the acceleration.  We notice that our first computed 
acceleration in Table 1 is about half of the other values.  If we reject this one measurement and 
compute an average of the remaining data, we find an average acceleration of 0.501, which would 
provide a better fit to the data.  We don't have a good explanation for why our first acceleration value is 
low compared to the others, but it may have to do with difficulties in timing the very first measurement 
at t=0.5 s.   We conclude that we have measured the acceleration reasonably well.  

In order to make a better measurement we might use a longer track so that we would have even more 

Figure 3: Velocity of the car versus time.



data points and a longer time over which to conduct the experiment.  We could also have more people 
time the car at various points along the track so that, with more measurements, our data would be more 
accurate over each time interval.    We could also try using a steeper track.  We suspect that perhaps 
friction in the car's wheels would prevent the car from accelerating as quickly as it might otherwise if 
the track were steeper.   

Appendix
Below we show the Matlab code used to make the plots in Figures 2,3,4.  
% make distance time plot in Figure 2
t=[0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0]
x=[0.000,0.062,0.250,0.562,1.008,1.580,2.252,3.059,3.997]
plot(t,x,'bs')
xlabel('Time (s)')
ylabel('Distance (m)')
% make velocity-time plot for Figure 3
t=[0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0]
v=[0.0,0.124,0.376,0.624,0.892,1.143,1.343,1.615,1.876]
plot(t,v,'rs')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
% make distance-time plot for Figure 4 with theoretical curve overplotted
t=[0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0]
x=[0.000,0.062,0.250,0.562,1.008,1.580,2.252,3.059,3.997]
plot(t,x,'rs')
hold on
a=0.469
plot(t,0.5*a*t.^2)
xlabel('Time (s)')
ylabel('Distance (m)')

Figure 4: The position of the car versus time, showing the  
data (asterisks) and the theoretical curve computed using the  
average acceleration (solid line).


