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INTRODUCTION

Astronomy and planetary science are observational sciences that involve
investigating the workings of the Universe. They encompass cosmological
observations on the scale of the entire Universe, observations of the planets in our
local Solar System, and everything in the intervening range.

Figure 0.1 A view of the southern sky dominated
by the band of the Milky Way. Comet Hyakutake is
also visible. (© Gordon Garrard)

From a dark site, the view of the night sky can be truly awe-inspiring (Figure 0.1).
For many people, merely observing the splendours of the Universe in this way is
enough. Others may wish to see more, through telescopes and binoculars, and a few
people will wish to understand a little about the objects they can see. This guide is
intended for those who wish to go beyond mere stargazing and begin to make
scientific observations of planets, stars and galaxies. In particular, it is designed to
provide university students in astronomy and planetary science with the requisite
knowledge needed prior to a session at an astronomical observatory or planetary
science laboratory.

Since the time of Galileo (Figure 0.2), astronomers have designed telescopes and
used them to investigate astronomical bodies, from the Moon to quasars at the limits
of the observable Universe. Furthermore, astronomical observations now use the
whole range of the electromagnetic spectrum, from radio waves through to y-rays

(pronounced ‘gamma rays’); telescopes are operated both from the ground and Figure0.2 Galileo Galilei (1564~

from satellites in orbit around the Earth (Figure 0.3a-0.3d); space probes carrying a  1642) was the first person to use a
variety of detectors visit bodies throughout the Solar System (Figure 0.3¢); and telescope to observe the Universe.
samples returned from the Moon and meteorites can be analysed in the laboratory. He discovered the four largest

The wealth of data that astronomers and planetary scientists collect provide evidence moons of Jupiter, observed

to answer questions about topics including how the Solar System formed, whether sunspots, and discerned individual
planetary systems exist around other stars, the life history of stars and galaxies; and  stars comprising the Milky Way.
how the Universe originated in the Big Bang.



Figure 0.3 Telescopes and astronomical satellite observatories operate across the
electromagnetic spectrum, and space probes carry a variety of detectors to distant parts
of the Solar System. (a) The Hubble Space Telescope is a satellite-based observatory
operating in the infrared/optical/ultraviolet. (© NASA) (b) The James Clerk Maxwell
Telescope is a mm-wave telescope in Hawaii. (Image courtesy of the James Clerk
Maxwell Telescope, Mauna Kea Observatory, Hawaii) (c) The Very Large Array is an
array of radio telescopes in New Mexico. (© NRAO/AUI/NSF) (d) The XMM-Newton
satellite is an X-ray observatory operated by the European Space Agency (ESA) (©
ESA). (e) The Cassini—-Huygens spacecraft is a mission to Saturn and its largest satellite
Titan, carrying a range of scientific experiments. (© NASA)




So astronomical observations have played — and continue to play — a crucial role in
developing our understanding of the Universe. If you want to understand and get a
feel for the role of astronomical observations, perhaps the best way is to perform
some yourself.

Throughout this book, we use the term observatory to denote a ground-based
facility that has equipment for carrying out astronomical observations in the optical
waveband and equipment for the analysis of extraterrestrial samples. Likewise, for
convenience, the term astronomer is used to denote any scientist researching in
astrophysics, cosmology or planetary science.

Broadly speaking, each project that you carry out at an observatory will have
several phases. The first phase is planning the observations or investigations
that you will carry out; the second phase will often involve acquiring the data
using a telescope; the third phase will usually involve working on a computer
to reduce and analyse the data you have obtained; the fourth phase will be the
interpretation of your results where you draw conclusions; and the final phase
will generally involve writing-up your project and/or presenting the results to
others.

These stages parallel those undertaken by astronomers engaged in research. As a
student, by following similar processes, you will be learning to think like an
astronomer, and this will give you insights into tackling practical problems that
will be valuable in many other areas of work experience.

Various other benefits come from engaging in observational astronomy and planetary
science as a student. Many projects demonstrate important concepts and phenomena
of physics, and seeing a phenomenon or measuring an effect can make it more real
and memorable. Carrying out astronomical observations develops a wide range of
skills that you will use in other areas besides astronomy and planetary science —
everything from planning to problem solving, from analysing data to presenting
results. Observational astronomy work also gives an opportunity to work
collaboratively with other students, and this can be a powerful learning experience,
as well as developing social skills.

In this book, we will discuss a variety of aspects of observational astronomy and
planetary science, with the aim of providing a sound basis for tackling projects in
practice. The book is divided into two parts.

Part I: Technigues begins by introducing you to concepts in positional astronomy
and discusses how to locate the objects that you’re interested in observing. Chapters
2-4 briefly describe astronomical telescopes, spectrographs and detectors and then
Chapter 5 describes the general procedures for processing images obtained with a
CCD detector before the data can be analysed. Chapters 6 and 7 discuss the general
principles behind astronomical photometry and spectroscopy which will underlie
many of the observations that you will carry out. The final two chapters of Part I
introduce microscopes and microscopy techniques as vital tools of planetary
scientists when studying samples returned from the Moon or meteorites and briefly
consider the techniques of interpreting images of planetary surfaces.



Part IT: Skills concentrates on key skills associated with practical science, discussed
in the context of work at an astronomical observatory. It begins, in Chapter 10, by
considering aspects of teamwork that are relevant to observational projects in
astronomy and planetary science. In Chapter 11 we then discuss the preparation and
planning for an observational project. A little time invested in this stage can pay
dividends in the quality of your results and the efficiency with which they are
obtained. Chapter 12 is about keeping records of your observations — recording what
you do, how you do it, what you observe and measure, the analysis and
interpretation of your results, and so on. Without any records to refer back to, you
are likely to find that the details of how you carried out the observations and any
conclusions that you draw from them will be rather ephemeral and soon forgotien.
We provide some guidelines for maintaining an observatory notebook, and you may
find it helpful to refer to these guidelines when catrying out your observations.

Chapter 13 tackles an important topic for any experimenter who makes
measurements: how reliable are the results? Scientists make the reliability of a
numerical result explicit by quoting an uncertainty with a measured value; for
example, an astronomical magnitude might be quoted as m, = 12.3 £ 0.2. In this
section, the quantification and combination of uncertainties are discussed in detail.
Most astronomical and planetary science projects involve numerical analysis of the
data, and Chapter 14 gives a few brief guidelines that should help with this. Data
analysis may involve graphs, and graphs are frequently used by astronomers as a
powerful tool for displaying and interpreting results; Chapter 15 deals with this topic
in some detail. Both data analysis and graph plotting have been revolutionized in the
last twenty years by the ready availability of graphic calculators and computers.
Chapter 16 indicates a few of the ways that these are used in astronomical work,
including a brief introduction to spreadsheets.

For practising astronomers and planetary scientists, carrying out observations and
analysing the results are generally of limited value unless those results are then
communicated to other scientists. This communication is generally achieved by
publishing the results in a scientific journal or reporting them at a conference.
Chapter 17, therefore, offers some guidelines on how to produce a clear and
complete report of your work.

In the following chapters, all terms in bold are explained in the Glossary at the end
of the book and the answers to end-of-chapter questions may be found at the end
too. There are also a number of in-text questions (denoted by ') designed to make
you stop and think before you move on. Try covering the answer (denoted by )
and working it out for yourself before reading the suggested response.



PART I: TECHNIQUES
T THE NIGHT SKY - POSITIONAL ASTRONOMY

In order to get the most out of the time you spend at an observatory, it is important
to become familiar with the appearance of the night sky. Therefore it is instructive to
consider how we measure the positions of celestial bodies and how their positions
change during the night and during the year. For instance, if you go out at, say,

10 p.m. on a February evening, how does the clear night sky differ from that at

11 p.m. on the same night, or from that at 10 p.m. a week or so later? How do the
Sun, the Moon and the planets move against the stellar background? Questions like
these are important in relation to the whole of observational astronomy and planetary
science, and you should be able to answer them after studying this section.

To specify the position of a celestial body, we need a coordinate system that is
fixed with respect to the distant stars, just as on Earth we have a latitude and
longitude coordinate system that is fixed with respect to the Earth’s surface.
Indeed, this terrestrial system is the basis of a celestial system that is a natural
choice for Earth-based observers. -

The terrestrial coordinate system is shown in Figure 1.1. The position of any point

O on the Earth’s surface is specified by two angles, the latitude /at and the longitude

long. Anywhere on the line [, has the same latitude as O (this is a line of latitude)

and anywhere on the line L, has the same longitude as O (this is a line of longitude).

Longitudes are measured from a zero of longitude that has to be chosen. For

historical reasons, the zero is the line of longitude that passes through a particular

telescope at the Royal Observatory, Greenwich, London. (This is often referred to

as the Greenwich meridian.) Longitudes extend from O degrees of arc (deg, or °)

to 180° east of Greenwich, and from 0° to 180° west of

Greenwich. (Obviously 180° east and 180° west are North Pole
coincident.) The zero of latitude is the Equator. This is the
line on the Earth’s surface midway between the North and
South Poles. These poles are where the Earth’s rotation
axis meets the Earth’s surface. Latitudes extend from 0° to
90° north of the Equator at the North Pole, and from 0° to
90° south of the Equator at the South Pole.

The degree of arc (1°) can be subdivided into 60 minutes
of arc (60 arcmin, or 60°), and the minute of arc can be
subdivided into 60 seconds of arc (60 arcsec, or 60”).

To put these angular sizes into perspective, it is useful to
remember that the angular diameter of the Sun and Moon,
as viewed from the Earth, are both = 30 arcmin = 0.5°,
the apparent diameter of Jupiter is = 45 arcsec when
closest to the Earth, the fuzzy image of a star affected

by turbulence in the Earth’s atmosphere is = 1 arcsec fslﬁgi?uf de
across, and the image of a star obtained by the Hubble South Pole
Space Telescope, limited by the telescope’s optics,

is = 0.1 arcsec across. Figure 1.1 Terrestrial latitude and longitude.
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To obtain a useful system of celestial coordinates,
imagine the Earth to be surrounded by a sphere with the
same centre as the Earth, as in Figure 1.2. This is called
the celestial sphere. The radius of the celestial sphere is
arbitrary, in other words, it can be made as large as we
like. The line from the centre of the Earth through the
North Pole intersects the celestial sphere at a point called
the north celestial pole. The south celestial pole is

defined in an analogous way. The projection of the
Earth’s Equator from the centre of the Earth on to the
celestial sphere is called the celestial equator.

The Earth’s rotation axis is very nearly fixed with respect
to the distant stars. Certainly, on a human timescale, the
north and south celestial poles and the celestial equator
can be regarded as very nearly fixed. Therefore until
further notice we shall regard them to be so. We thus
have the basis of a useful coordinate system, the celestial
coordinate system, used by astronomers and by
navigators.

“celestial
equator

zero of =
celestial

1 . =
SEeiice ‘south celestial pole

Figure 1.2 The celestial sphere.

Suppose that there is a celestial body in the direction shown in Figure 1.2. Its
celestial coordinates are the two angles dec and RA, celestial equivalents of latitude
and longitude, respectively.

Celestial latitude is called declination, abbreviated as dec in Figure 1.2, and
sometimes written as & (the Greek lower case letter delta). Like terrestrial latitude,
it extends from 0° at the celestial equator to 90° N at the north celestial pole, and
to 90° S at the south celestial pole.

However, the usual convention with celestial latitude is to write northern latitudes
as positive, and southern latitudes as negative. Each degree of declination is
subdivided into 60 minutes of arc, and each minute of declination is subdivided
into 60 seconds of arc.

Celestial longitude is called right ascension, abbreviated as RA in Figure 1.2, and
sometimes written as & (the Greek lower case letter alpha). Note that right
ascension is measured only eastwards from the zero of celestial longitude, and
thus, in terms of degrees, runs from 0° to 360°. This is one difference from
terrestrial longitude, which by convention, is measured from 0° to 180° east and
from 0° to 180° west. There are two more differences. First, the zero of celestial
longitude is not the projection onto the celestial sphere of the zero of terrestrial
longitude (the Greenwich meridian).

Why would such a projection not be useful?

Such a projected longitude would sweep across the stars as the Earth rotates,
and so the celestial longitude of every celestial body would continuously
change.

Therefore, the zero of celestial longitude is specified by a particular point on the
celestial equator that is fixed with respect to the distant stars. It follows that the
RA of a celestial body is also fixed. For historical reasons, the chosen point is




called the First Point of Aries, which we shall denote by
the symbol Y (the astrological symbol for the constellation
Aries).

north celestial pole

celestial
sphere

The second difference between terrestrial longitude and
right ascension is that right ascension is not usually
measured in degrees, but in hours! Right ascension ranges
from O hours (+0° longitude) to 24 hours (+360°
longitude), which is back at zero. This convention arises
from the rotation of the Earth, which rotates once a day at
the centre of the celestial sphere. As 360°/24 h = 15° b1, so
1 hour of right ascension corresponds to 15° at the celestial
equator. The abbreviation for hours is h, and the usual
subdivisions into minutes (min) and seconds (s) apply. Note
that 1 minute of right ascension is not the same angular size
as 1 minute of arc; at the celestial equator the former is
one-sixtieth (1/60) of 15°, while the latter is one-sixtieth of
1° of arc. Similarly 1 second of right ascension at the
celestial equator is 15 times larger than 1 arcsec.

toa
celestial
body

celestial
equator./

“south celestial pole

Figure 1.3 A large celestial sphere with the Earth shrunk to

Strictly speaking, celestial coordinates are defined with
a small dot at the centre.

respect to the Earth’s centre. However, we can make the
celestial sphere so much larger than the Earth that, for
practical purposes, from any point on the Earth’s surface
the celestial sphere looks the same, and the celestial coordinates of distant celestial
bodies have values practically independent of the position of the point on the
Earth’s surface. Such a celestial sphere is shown in Figure 1.3, where the Earth is
so much smaller that it is shown as a point.

On the celestial sphere, note that the lines marking different right ascensions
-converge as they progress from the celestial equator to the celestial poles, in the
same way that lines of longitude converge at the Earth’s geographical poles.

What this means is that although 1 minute of right ascension corresponds to 15
(arcmin) at the celestial equator, it corresponds to fewer arcminutes at declinations
away from the celestial equator. The factor by which it is reduced is simply the
cosine of the declination, cos §.

According to a particular catalogue, the star Vega has coordinates RA = 18h
36min 56.3s, dec = +38° 47’ 01”. Why do you think the right ascension has
been specified to the first decimal place of seconds, while the declination is
rounded to the nearest whole second of arc?

At the celestial equator, 1 second of right ascension is 15 times larger
than 1”. At the declination of Vega, the multiple is reduced by a factor:
cos(38° 47 01”) = 0.78, so 1 second of right ascension is 0.78 x 15

~ 12 times larger than 1” of declination. By writing the declination to the
nearest arcsecond, the implied accuracy of the position is £0.5” in this
coordinate. If the right ascension is known to the same accuracy, this
corresponds to £0.57/(12” s71) ~ £0.04 seconds of right ascension at this
declination. Hence if both coordinates are measured to the same accuracy,
it makes sense to quote the right ascension to the nearest 0.1 seconds.



OBSERVING THE UNIVERSE
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A sphere is not a very useful form of map for the printed page, and Figure 1.4
shows one way of projecting the celestial sphere on to a plane. We end up with a
flattened view exactly as in Mercator projections of maps of the Earth, looking
outwards. The entire sky (flattened or not) is divided up into 88 irregularly shaped
regions, leaving no gaps. Each region is called a constellation, and all of them have
names, though in Figure 1.4 only a few of the names are shown. These regions of
sky are based around patterns of stars (also known as constellations), some of
which are easily recognizable: here we have shown just the more prominent stars.
Typical constellations are 10° to 20° across, as shown in Figure 1.5 which is a
photograph of the familiar constellation Orion.

about 20°

Figure 1.5 A photograph of the
familiar constellation Orion. The
seven bright stars that locate
Orion’s shoulders, knees and belt
are clearly seen, as is the bright
patch known as the Orion nebula
which is in Orion’s sword. (© Till
Credner, AlltheSky.com)

Any body in the sky will have celestial coordinates that lie in a particular
constellation, and the way to express this is to say that object X lies in Orion, for
instance. Indeed, this provides us with a basis for labelling the brighter stars. This is
done by using the letters of the Greek alphabet (@, 3, ¥, , and so on), followed by
the constellation name, which is usually reduced to a standard three-letter
abbreviation. Thus, in Orion we have o Orionis,  Orionis, etc. (the modified
constellation name is the Latin genitive), which are abbreviated to ¢, Ori, § Ori, etc.
To include more stars, numbers are used once the Greek letters are exhausted.

The brightest stars also have individual names: thus o. Ori is Betelgeuse (‘betel-
jers’), and B Ori is Rigel (‘rye-jel’), for instance.



In order to include faint stars, and non-stellar objects, the constellation-based system
is abandoned, and various catalogues are used. We shall not go into details, though
you will come across a number of particular examples, notably the Messier
Catalogue, and the New General Catalogue (NGC). These are both used for non-
stellar objects and star clusters. The Messier Catalogue was prepared originally by
the French astronomer Charles Messier (1730—-1817), and today consists of 110
bright objects of assorted types, labelled M1 to M110. The New General Catalogue
is much larger, embracing 7840 objects, including all those in the Messier Catalogue.
It was published in 1888 by the Danish astronomer John Louis Emil Dreyer (1852~
1926), who spent much of his working life in Ireland. Entries in his catalogue take
the form NGC, followed by a number.

Modern astronomical catalogues contain vast numbers of stars and galaxies.

For instance, the Hubble Space Telescope (HST) Guide Star Catalog contains
coordinates and brightnesses of over 15 million stars; the catalogue resulting from
the two-micron all-sky survey (2MASS) contains over 470 million objects and the
USNO-B1.0 catalogue, constructed from scanning photographic sky survey plates
obtained over the last fifty years, contains over 1 billion objects. The HST Guide
Star Catalog is in common use in computer-based sky maps.

Some objects do not have constellation-based names, because their positions are not
fixed and their celestial coordinates therefore move from one constellation to
another. (In principle, all celestial bodies move with respect to each other and the
positions of stars on the celestial sphere do change, but these changes are generally
very small.) Notable amongst such bodies are the Sun, the Moon, and the planets,
none of which is shown in Figure 1.4 for this very reason, though we have shown
the annual path of the Sun — this is the thin sinusoidal line about the celestial equator
labelled ‘ecliptic’.

Before we leave Figure 1.4, note the star Polaris. With a declination of just over
+89°, the position of this relatively bright star is currently close to the north celestial
pole. Thus, it is often called the Pole star. The Southern Hemisphere is not as
fortunately endowed: there are no relatively bright stars located this close to the
south celestial pole.

Let’s consider now the view of the sky that we get at a particular instant from a
particular point on the Earth’s surface, such as from the point O in Figure 1.6. The
vertical direction at O is from the centre of the Earth upwards through O, and it is
perpendicular to the horizontal plane at O. In this plane we have marked the north,
east, south and west directions.

How much of the sky can an observer at O see?

An observer at O can see only the half of the sky that lies above the horizontal
plane.

The horizontal plane at O can be expanded to meet the celestial sphere much larger
than the Earth, as in Figure 1.7. The plane intersects the sphere at the observer’s
horizon in the stars, dividing the sphere into the visible and invisible hemispheres.
The vertical direction at O intersects the celestial sphere at a point called the zenith;
this is the point overhead at O. The north point at O is where the north direction in



the horizontal plane at O (Figure 1.6) intersects the celestial sphere, and likewise for
the east, south and west points. The meridian at O is the arc that connects the
north point, the zenith, and the south point; it also passes through the celestial
poles: only the visible half of the meridian is shown in Figure 1.7.

north
direction .
atO V@r‘ucgﬂ
/r__\““‘“‘x direction
\ B atO
b horizontal
North \ plane at O
Pole

east
direction
atO
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a0 —

direction
atO

toT

Earth

Figure 1.6 The horizontal plane at a point O on the Earth’s surface. The three straight
lines through O intersect each other at 90°.
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— zenith at O
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west point
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south celestial pole

Figure 1.7 The horizontal plane at the point O on the Earth’s surface (Figure 1.6),
extended to meet a large celestial sphere.



Figure 1.8 The angle at O
between the north point and the
north celestial pole is the latitude
lat of O.

Often, the zenith angle is called the
zenith distance.

Figure 1.9 The altitude alt and
zenith angle zen of a body.

The meridian is an example of a great circle. This is any line on a sphere that is the
intersection between the sphere and a plane passing through its centre. The celestial
equator is another great circle. When we measure angles between two points on the
celestial sphere, we do so along the great circle that connects them. One example is
along the meridian itself: in Figure 1.7 we have labelled the angle at O between the

north point and the north celestial pole. In fact, we have labelled it as lat, suggesting
that it is equal to the latitude of O, and Figure 1.8 shows that indeed this is the case.
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Finally, we need to define the altitude and zenith angle of a celestial body. The
altitude is the angle alt in Figure 1.9: it is the angle between the horizontal plane and
the direction to the body, measured along the great circle that passes through the
zenith and the point on the celestial sphere in the direction to the body. The zenith
angle (zen in Figure 1.9) is simply the angle on the same great circle between the
direction to the body and the zenith. Clearly we have zen + alt = 90°.

zenith at O

toa
celestial
body




The visible hemisphere in Figure 1.7 for an observer at O on the Earth’s surface is
not fixed on the celestial sphere. This is because the Earth rotates on its axis once
every day, anticlockwise as viewed from above the North Pole — this direction of
rotation is called prograde rotation, because the planet spins in the same sense as
the direction of orbital motion. A planet spinning in the opposite sense to its orbital
motion is said to have retrograde rotation. The axis of rotation is along the line
joining the north and south celestial poles. Thus, stars appear to make a circle
around the north celestial pole once a day, with celestial bodies that are sufficiently
far from the poles rising above the horizon in the east, and setting below the horizon
in the west (see Figure 1.10).

Figure 1.10 A long exposure
of the sky showing the apparent
motion of the stars as the Earth
rotates. This is in fact an image
of the south celestial pole.
(Courtesy of the Anglo—
Australian Observatory/David
Malin Images)

The Earth not only rotates on its axis, but also orbits the Sun, taking a year to return
to the same position with respect to the distant stars, as seen from the Sun. The
Earth revolves about the Sun in an orbit that, for present purposes, we can
approximate as a circle with the Sun at the centre, and with the Earth moving at a
uniform speed around the circle. The radius of the circle is 1.50 x 108 km.

What is the speed of the Earth in its orbit around the Sun?

Speed = distance / time. The distance travelled by the Earth in one year is the
circumference of a circle whose radius is 1.50 x 108 km. This distance is
given by 21 x radius = 21t X 1.50 x 108 km = 9.42 x 108 km. So the speed
of the Earth’s motion in its orbit is 9.42 x 103 km/(365.26 day x 24 h day~!
x 60 min h~! x 60 s min~!) = 29.9 km s~1.
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Figure 1.11 (a) An oblique view
of the Earth’s orbit around the Sun,
showing the Farth’s rotation axis.
{b) Face-on, the Earth’s orbit is far
more circular.

The plane of the Earth’s orbit is called the ecliptic plane. The Earth’s axis of rotation
is not perpendicular to this plane, but is inclined to the perpendicular at an angle of
23° 27’ as Figure 1.11 shows. Note that in Figure 1.11a the non-circular shape of the
Earth’s orbit arises from the oblique viewpoint: it appears much more circular when
we view it face-on, as Figure 1.11b shows. Note also that the dots representing the
Sun and the Earth are not to scale — they are far too large! Most important of all, note
that the direction of the Earth’s axis remains fixed (almost) with respect to the distant
stars, and not with respect to the Sun. At A the Northern Hemisphere is maximally
tilted towards the Sun. This is called the June solstice, and happens on or near 21
June each year. (In the Northern Hemisphere, this is more commonly referred to as
the summer solstice. However we use the term June solstice to avoid confusion, since
this is known as the winter solstice in the Southern Hemisphere!) The Earth moves
anticlockwise around the Sun, as viewed from above the northern side of the ecliptic
plane — prograde motion again. Thus, one-quarter of an orbit later we reach B around
21 September, then C around 21 December (the December solstice, also known as
the winter solstice in the Northern Hemisphere and the summer solstice in the
Southern Hemisphere), and then D around 21 March.

Figure 1.11 demonstrates, through the example of the constellation Orion, that certain
celestial objects are visible from the Earth at only certain times of the year. This lies
in the direction shown. Therefore, around May and June each year, as seen from the
Earth, Orion lies in about the same direction as the Sun, and so will not be visible — it
is only above the horizon during the daytime and the sky will be too bright. By
contrast, around November and December, it lies in roughly the opposite direction
from the Sun, and so will be visible for most of the night. During the other months it
will be visible for less of the night. A different case is that of Polaris. The proximity
of its direction to the north celestial pole means that in the Northern Hemisphere,
Polaris never sets, so it is visible during the hours of darkness.

What is the visibility of Polaris in the Southern Hemisphere?

It never rises, So it is never visible.

To examine further the changing relationship between the Sun and stars, let’s
examine the Earth at position 1 in Figure 1.12, where the direction to the Sun is on
the observer’s meridian — this defines local noon. Also, suppose that a star lies in the
direction of this meridian. (There needn’t be a real star, any point fixed on the
celestial sphere will do.) As the Earth moves around its orbit it also rotates, and at
position 2 it has rotated just once with respect to the distant stars, and so the star
again lies in the direction of the meridian. The time elapsed between positions 1 and 2




is one sidereal day (‘sidereal’ means ‘star related’). However, the Sun is not yet
again in the direction of the meridian. The Earth has to rotate farther (and it also
moves farther around its orbit) to achieve this configuration, as at position 3. The
time elapsed between positions 1 and 3 is one solar day, and it is clearly longer than
the sidereal day, though by only a few minutes (note that Figure 1.12 is not drawn to
scale).

' 1 Sun
Earth o-—>» >
| to
5 (" star
{ -
Earth’s QV

rotation
Earth’s orbital motion

The familiar 24 hour day of civil time is not quite the same as the solar day. This is
because during the year there are small variations in the intervals between the Sun’s
crossing of an observer’s meridian, and hence in the length of the solar day. These
variations arise mainly from the tilt of the Earth’s rotation axis, and from the Earth’s
orbit being slightly different from circular; we will not go into details. By contrast,
the mean solar day is fixed in duration and equal to 24 hours. If solar time and mean
solar time coincide at some instant, they will coincide again a year later, but in
between differences develop, sometimes solar time being ahead of mean solar time,
and sometimes behind. The civil day is equal in length to the mean solar day.

If we use the terms hours (h), minutes (min) and seconds (s) to denote subdivisions
of the 24 h mean solar day (or civil day), then the sidereal day is 23 h 56 min 04 s
long, i.e. 03 min 56 s shorter. This difference means that, according to mean solar
time, the distant stars cross the observer’s meridian 03 min 56 s earlier every day,
which amounts to 27 min 32 s earlier every week. Thus, the stellar sky at say 22 h
00 min 00 s (mean solar time) on a certain day, looks the same as the stellar sky at
21 h 32 min 28 s seven days later. The stellar sky thus progresses westwards with
respect to the Sun, taking one year for the differential cycle to be completed.

This extra rotation per year of the stellar sky means that there is one more sidereal
day in the year than there are mean solar days. Thus, with 365.26 mean solar days
per year, there are 366.26 sidereal days per year.

Mean solar time is a local time, in that observers at different longitudes will observe
the Sun in the direction of their meridians at different times. For civil purposes this is
very inconvenient, and so the world is divided up into time zones, where civil time is
the same within each time zone. Mean solar time will vary with longitude across the
zone, typically by one hour from the west to the east extremities of the zone. In most
countries there is also daylight saving time, in which civil time is advanced by an
hour in the spring and summer months: in the UK this is called British Summer Time.

When astronomers wish to record the time at which an observation is made, or at
which a given phenomenon occurs, there is clearly scope for confusion due to the
variation in civil time from one location to another. To get around this problem,
astronomers therefore usually record the universal time (UT) associated with a
particular event. To most intents and purposes UT is identical to the civil time on the
Greenwich meridian, without the inclusion of daylight saving time. UT is measured in
hours, starting from 0 at midnight, and incrementing by 24 hours over the course of
one mean solar day.

Figure 1.12 The difference
between the sidereal day and the
solar day: the straight black arrows
denote the direction of the
observer’s meridian (not to scale).



South Pole

Figure 1.14 The Earthin
position B in Figure 1.13, viewed
from a point in its orbit just behind
the Earth.

An eclipse of a binary star is observed to occur at 22:15 hours civil time from
an observatory in Chile. Civil time in Chile is 4 hours behind that at the
Greenwich meridian. What is the UT of the event?

The UT of the eclipse is 02:15 hours on the following day.

A transit of To across the face of Jupiter is predicted to occur at UT

23:30 hours. What will be the local civil time of the event, as observed from an
observatory in Majorca in July? (Majorcan civil time is 1 hour ahead of that at
the Greenwich meridian, and daylight saving time is in operation during July.)

| The local civil time of the transit will be 01:30 hours in the early morning of the
following day. (This is one hour later due to the shift in time zones, plus a
further hour due to daylight saving time.)

When astronomers wish to be even more precise, they may use coordinated
universal time (UTC). This is based on atomic time. To correct for the small
irregular varying motion of the Earth around its axis, and in its orbit around the Sun,
UTC is kept in step with UT by the insertion or deletion of leap seconds at the end of
June or December as necessary.

Let’s now add a celestial sphere to each Earth in Figure 1.11a. We obtain Figure 1.13.
Note that as the Earth orbits the Sun the celestial sphere remains fixed with respect to
the distant stars, and this is indicated by the fixed orientation of the line joining the
north and south celestial poles, and by the fixed direction of Aries Y, which lies on
the zero of right ascension. The positions on the celestial sphere of even the nearer
stars barely change as the Earth orbits the Sun, because the Earth’s orbit is very
small compared with their distance. However, the Sun’s celestial coordinates change
dramatically, and we shall now use Figure 1.13 to map these changes.

D (about 21 March)

A (about 21 June) [ ) C(about 21 Dec)

Figure 1.13 The changing celestial coordinates of the Sun.

When the Earth is at A the Sun has a right ascension 6h and a declination +23.5° (the
June solstice). At B the values are (12h, 0°). The zero declination at B means that the
direction to the Sun is on the celestial equator, with the declination changing from
north to south. At such a time there is close to 12 hours between sunrise and sunset
all over the Earth, as Figure 1.14 shows.




Such an event is loosely called an equinox (equal day and night) but strictly an
equinox is the precise moment when the direction to the centre of the Sun is on the
celestial equator. The position at B may be referred to as the September equinox,
although in the Northern Hemisphere it is more commonly called the autumnal
equinox. At C the Sun’s celestial coordinates are (18h, —23.5°) (the December
solstice). At D we have the other equinox, which may be referred to as the March
equinox, with the Sun at (Oh, 0°) and moving from south to north. Again note that
this position is more commonly referred to as the vernal equinox, or spring equinox,
by observers in the Northern Hemisphere. As with the solstices though, we
designate the equinoxes using the month rather than the season to avoid confusion
between Northern- and Southern-Hemisphere observers. The complete trace of the
Sun’s celestial coordinates is shown in Figure 1.15, and is called the ecliptic (also
shown in Figure 1.4). Note that this is a great circle on the celestial sphere, the
intersection of the ecliptic plane with the celestial sphere.
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R4/hours December, D ~ 21 March.

You have just seen that at the March equinox the RA of the Sun is zero, and so the
Sun lies in the direction of Y. This is no coincidence, for this is how the zero of right
ascension is defined! Thus, the zero of celestial longitude is the line of celestial
longitude that passes through the celestial equator at the point where the declination

of the Sun is changing from south to north. ©’
7

If the Earth’s rotation axis really was fixed with respect to the distant stars, then the
direction to Y would be similarly fixed. Unfortunately, the axis is not quite fixed.
Although this effect is small, it must be accounted for, since over time the
coordinate system shifts relative to the positions of stars and hence their catalogue
positions become incorrect. The largest effect by far is the so-called precession of
the Earth’s rotation axis, shown in Figure 1.16. The Earth’s rotation axis takes

25 800 years to complete one circuit, so celestial coordinates go through a

25 800 year cycle, meaning they shift by up to 50” per year. Consequently, a date
(perhaps confusingly, also called the equinox) must always be appended to celestial
coordinates to specify the time at which they are correct. It is customary to tabulate
catalogue coordinates for the beginning of a year, so the equinox may be specified
by the year only, e.g. 2000.0, rather than for every possible date. Hence the
coordinates of the star Vega, for example, may be given as RA = 18h 36min 56.3s,
dec = 38° 47" 01”7 (equinox 2000.0) or as RA = 18h 35min 14.7s, dec = 38° 44’ Figure 1.16 The precession of
10” (equinox 1950.0). the Earth’s rotation axis.




Figure 1.17 The Moon’s orbit
(enlarged): an oblique view.

new

third (last)

The Moon orbits the Earth, and is easily the Earth’s nearest neighbour, in fact nearly
400 times nearer than the Sun. Figure 1.17 shows the lunar orbit (enlarged) in relation
to the Earth’s orbit on four occasions during the year. The plane of the lunar orbit
makes only a small angle (around 5°) with respect to the ecliptic plane. Therefore, as
the Moon orbits the Earth, its celestial coordinates are never far from the ecliptic in
Figure 1.15. Note that we have added no dates to Figure 1.17. This is because the
orientation of the orbit of the Moon is not quite fixed with respect to the Earth’s orbit.
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Figure 1.18 shows the Moon in its orbit; the size of the Moon is greatly
exaggerated, and the orbit has been approximated by a circle, with the
Earth at its centre. The Moon shines only by reflecting the Sun’s
radiation, and so the lunar phases depend only on the angle between the
Moon and the Sun, as seen from the Earth. Thus, when the Moon and
Sun Sun lie in roughly the same direction we have a new Moon — essentially
invisible unless the Moon passes exactly between an observer and the
Sun, when they observe a solar eclipse. A new Moon occurs at intervals,
on average, of 29.53 days. At the other extreme, when the Moon and Sun

lie in roughly opposite directions, the Moon is full. When the angle
quade between the Moon and the Sun is 90°, the Moon is half-full; these
Figure 1.18 Lunar phases (not to scale). positions are marked first quarter and third quarters in Figure 1.18.

Table 1.1 The planets and their
inclinations i to the ecliptic plane.

Planet i/deg
Mercury 7.00
Venus 339
Mars 1.85
Jupiter 1.30
Saturn 249
Uranus 077
Neptune 177
Pluto 172

In what sense are these positions quarters?

They are one-quarter and three-quarters of the time through the lunar cycle,
starting at new Moon.

The Moon rotates on its axis in the same time that it takes to orbit the Earth, and in
the same direction. This is called synchronous rotation. As a result, the Moon
presents more or less the same face towards the Earth — the familiar ‘man in the
Moon’ pattern. However, largely because the Moon’s orbit around the Earth is not
perfectly circular, and also because its rotation axis is not quite perpendicular to the
plane of its orbit, we do see rather more than half the Moon’s surface. The Moon’s
surface, as we see it, appears to oscillate slightly in various ways around a mean
position. The apparent oscillations are called librations and they allow us to see
about 59% of the lunar surface from the Earth.

Beyond the Moon we come to the planets. These move in orbits around the Sun, in
planes that, in most cases, make small angles i with respect to the ecliptic plane
(Table 1.1). Therefore, the celestial coordinates of these planets stay close to the
ecliptic. The exact positions vary from planet to planet, and from year to year.




We are now in a position to consider, in practical terms, the effect of the Earth’s
motions on an observer’s view of the sky. In particular, we want to establish which
half of the celestial sphere is above an observer’s horizon at any particular date and
time. A planisphere is a device that supplies this information, and an example is
shown in Figure 1.19. When you are at an observatory, making observations, a
planisphere can provide a quick and easy way of identifying what is visible from
your location and when is the best time to observe a given object. Alternatively, there
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Figure 1.19 A planisphere.
Note that the zenith is half-way
along the visible half of the
meridian, i.e. almost coincident
with the star Capella.




Figure 1.20 Animage
generated by a software
planisphere package (‘The Sky’
Astronomy Software) showing
the night sky from a particular
location at a particular time.

are many different software packages (Figure 1.20) that effectively act as electronic
planispheres (in addition to providing a lot more features as well). These software
packages allow you to input the location of the observatory, and the date and time at
which observations are to be made, and then return a detailed map of the sky for
that particular instant. Whether a physical planisphere or a software planisphere is
most useful for your observations will depend on your own preference and on what
is available to you. Details of software packages will vary from one product to
another, so it is not appropriate to give instructions for their operation here.
However, all physical planispheres operate in exactly the same manner, s it is useful
to provide some instruction in their use.

A planisphere is specific to a given latitude, give or take a few degrees. The lower
sheet displays all of the sky ever visible from that latitude. Around the edge of the

lower sheet, the right ascension is given in hours and in degrees, and along several
of the radial lines the declination is given. The lower sheet also carries a scale that
shows various dates through the year — we shall come back to this shortly.

The upper sheet rotates on the lower sheet around a point that represents the north
celestial pole (we shall assume that the observer has a northern latitude). This sheet
has an elliptical aperture, the boundary of which represents the observer’s horizon.




Within the aperture is the hemisphere of sky on view at a particular date and time.
To select a particular date and time, the desired local mean solar time on the upper
sheet is lined up with the date on the lower sheet. Civil time should be sufficiently
close to local mean solar time, except that, if daylight saving time is in force, then
you should subtract an hour from civil time.

In Figure 1.19, we have marked the visible half of the meridian, the zenith, the
north celestial pole, and the north point and south point. The planisphere itself
marks the eastern and western horizons. (Note that, because we are representing a
portion of a sphere on a plane, the planisphere has geometrical distortions.)
Compared with terrestrial maps, you can see that east and west are reversed. This is
because the planisphere is to be held above your head, and you are to look up at it,
with the meridian correctly orientated. That’s all there is to using it!

You can also use a planisphere to simulate the effect of the Earth’s rotation. If the
upper sheet is slowly rotated, in a clockwise direction, the stars rise in the east,
reach their highest altitude as they cross the meridian, and set in the west. By lining
up a particular time with a particular date, say 22 h (10 p.m.) on 14 February, and
rotating the upper sheet clockwise until the same time lines up with 15 February,
you have simulated the passage of one mean solar day. Note that, in such a case, the
sky has shifted slightly westwards — this is because of the difference between the
solar and sidereal days (due to the motion of the Earth about the Sun).

By rotating the upper sheet, the effect of declination on the apparent motion of a
celestial body across the sky may also be demonstrated. At a sufficiently large
negative (southerly) declination, a celestial body never rises, but remains always
below the horizon. Then, as we select bodies with more and more northerly
declinations, there comes a point at which a body just touches the horizon at the
south point (the declination of this object is still likely to be less than zero). As the
declination becomes yet more positive, the rising and setting points move farther
.away from the south point, and the time between rising and setting increases. The
maximum altitude of the body, which occurs when it is on the meridian, also
increases. We ultimately reach a declination above which a given body is always
above the horizon. Such a body is called a circumpolar body. The higher the latitude,
the greater the fraction of the sky that is circumpolar.

e Celestial coordinates are based on the celestial sphere. The celestial poles and
the celestial equator are projections of the Poles and the Equator of the Earth.

o Celestial latitude is called declination (dec), and is measured in degrees north
and south of the celestial equator. Degrees north are denoted by positive values,
and degrees south by negative values.

o Celestial longitude is called right ascension (RA), and is measured eastwards in
hours, where a 24-hour change is equivalent to a 360° change in celestial
longitude. The zero of right ascension is marked by the First Point of Aries, Y,
defined as the point at which the Sun crosses the celestial equator moving from
south to north. The north and south celestial poles, the celestial equator, and Y
are all very nearly fixed with respect to the distant stars.

e At any instant, an observer on the Earth’s surface will see only one-half of the
celestial sphere.



e Civil time is based on the Sun, with the familiar day more accurately called the
mean solar day. The sidereal day, based on the apparent positions of the stars, is
about 3 minutes 56 seconds shorter than the mean solar day: any star will rise
tomorrow about 3 minutes 56 seconds earlier than it did today.

e Times of astronomical phenomena are usually recorded in terms of their
universal time. UT is essentially the same as civil time on the Greenwich
meridian (GMT), ignoring the effect of daylight saving time.

e The Earth’s orbital motion, and the inclination of its rotation axis with respect to
its orbital plane (the ecliptic plane), cause the Sun’s celestial coordinates to
change. The Sun traces out a path on the celestial sphere called the ecliptic,
which is the intersection of the ecliptic plane with the celestial sphere.

e The celestial coordinates of the Moon and the planets also change. The orbital
planes of most of these bodies make small angles with respect to the ecliptic
plane, so their celestial coordinates trace out paths on the celestial sphere close
to the ecliptic.

e A planisphere is a useful tool for displaying the celestial hemisphere visible to an
observer at a given latitude, at any time of the day and on any date in the year.
Software tools can do this also, and usually more besides.

e As the Earth rotates, the visible hemisphere changes, but (except for an observer
at the Earth’s Equator) there is a portion of sky that never sets, and another
portion that never rises. These portions depend solely on the observer’s latitude.

QUESTION 1.1

The celestial coordinates of the star B Trianguli are (02h 09.2min, +34° 57°), and
those of the star 8 Centauri are (14h 06.4min, —36° 20"). Roughly speaking, how far
apart (in angular terms) are the directions of the two stars in the sky?

QUESTION 1.2

(a) What is the altitude of (i) the north celestial pole (for an observer in the Northern
Hemisphere) and (ii) the zenith?

(b) Suppose that, from some point on the Earth’s surface, the Sun, at some
particular moment, has an altitude of 64° 21’. How many degrees and minutes of arc
is it from the zenith?

QUESTION 1.3

For observers at latitudes 90° N, 50° N and 0°, describe, with the aid of sketches a
bit like Figure 1.8, where the celestial equator lies in the sky in each case.

QUESTION 1.4

Refer to the image of the planisphere in Figure 1.19.
(a) What civil time on 27 December corresponds to the view of the sky shown?
(b) Which constellations are just setting at this time?

(c) Roughly what is the right ascension of stars that lie on the southern part of the
meridian at this time?

(d) Roughly what is the most southerly declination that is visible at this time?




2 TELESCOPES

Unaided human eyes, well as they may serve the needs of everyday life, are not very
suitable for detailed astronomical observation. First, the eye has a limited sensitivity.
A distant source of light, such as a star, will not be seen at all unless the intensity of
light from it reaching your eye is above the sensitivity threshold of the retina.
Second, the ability of the eye to distinguish fine detail is limited by the finite physical
size of the detectors on the retina and by the small aperture of the eye. The ability
of a telescope or the eye to distinguish between two objects that are very close to
one another is called its (angular) resolution. Limited resolution makes it impossible
for human eyes to separate individual distant sources of light that are closer than
about 1’ apart, or to discern details of their shape or structure on angular scales
finer than this.

The invention of the telescope at the beginning of the seventeenth century was an
important milestone in the advancement of astronomy. Here was a simple instrument
that at once overcame, to some degree at least, these shortcomings of human eyes.
In this section we shall first look at the characteristics of optical elements that may
be combined to make telescopes, then we shall consider the main designs of
refracting telescopes and reflecting telescopes that have been developed over the
past four centuries, and finally look at the key ways of characterizing the
performance of an astronomical telescope. To clarify the nomenclature, the name
‘refracting telescope’ (or refractor, for short) is used to indicate a telescope in
which only lenses are used to form the image; the name ‘reflecting telescope’ (or
reflector for short) is used to indicate a telescope in which a curved mirror is used
in place of one of the lenses. In any telescope, the optical element that gathers the
incoming light is variously referred to as either the objective lens or mirror, or the
primary lens or mirror. A subsequent lens used to view the image by eye is referred
to as the eyepiece lens.

In order to understand how telescopes work, it is useful to outline the basic
principles of curved lenses and mirrors. A surface which is the same shape as a
small portion of a sphere is called a spherical (or more correctly spheroidal) surface.
Surfaces with this shape have a special optical property which makes them highly
valuable: their ability to bring light to a focus. Actually, the focusing properties of a
spheroidal surface are not perfect, as we shall see later, but the imperfection is often
more than compensated for by the purely practical consideration that a precise
spheroidal optical surface can be produced much more easily — and hence at much
lower cost — than a precise aspheroidal (non-spheroidal) optical surface.

Three important focusing properties of spheroidal surfaces are described in the three
following statements. Unfortunately, neither of the first two statements is exactly
true for any real optics, but they are extremely valuable approximations to the truth
and will greatly aid your ability to understand the layouts of optical instruments such
as telescopes and spectrographs.

(1) When parallel rays of light pass through a lens with convex spheroidal surfaces,
or reflect from the surface of a spheroidal concave mirror, they are brought to a
focus. The distance of the focal point from the lens (or mirror) is called the focal
length, f. This is a single quantity that characterizes the optical performance of the
lens or mirror in question.




(2) Light rays passing through the centre of a lens do not deviate from their
original path.

(3) Light paths do not depend on the direction in which light is travelling. So, for
example, since parallel rays of light are brought to a focus by a convex lens at a
distance f from the lens, then rays of light emanating from a point a distance f away
from the lens will be converted into a parallel beam. A lens which is used in such a
way is called a collimator, and the beam of parallel light that is produced is said to
be collimated.

Broadly speaking there are two sorts of lenses and mirrors used in optical systems.
Converging (convex) lenses and converging (concave) mirrors each cause parallel
rays of light to come together at the focal point, or focus, of the lens or mirror
(Figure 2.1a and b). In contrast, diverging (concave) lenses and diverging (convex)
mirrors each cause parallel rays of light to spread out as if emanating from the focal
point situated at a distance of one focal length from the centre of the lens or mirror
concerned (Figure 2.1c and d).

Converging lenses and mirrors used individually can each produce real images of
distant objects, by which is meant an image that may be captured on a screen or
directly on a detector such as photographic film. Real images are those images made
by the convergence of actual rays of light. However, when eyepiece lenses are used
with telescopes, the final image formed by the telescope is said to be a virtual
image, since it is situated at a location from which rays of light appear to emanate
(see Figure 2.2 and Figure 2.3 below). Such an image cannot be captured directly
on a detector. However, eyepieces are always used in conjunction with another lens
— namely the lens of the eye itself — which converts the virtual image produced by
the telescope into a real image on the retina of the eye.

\i

\ ) o .
- i L T ~ ,7\
. \ e R g et S
axis | —————— = = e — |
> -- - — o — |
| e ‘ o - —————_ |
| o > i o f
_ - -.IL—~—’"P / = . ak X ~__J /
3 > = ~ ~J /
/e
> N
. —f—
- 7 | ®
(@ '
i /
- _ ] -
- = -II // L
! T >
o . == il | >
axis . o - | _ iy
> == 'I »
| S : ~ .l \ >
- £ s =
> 1S ,\\ e »
£ 4
“_ f } \\
(©) (@

Figure 2.1 (a) A convex lens will cause parallel rays of light to converge to the focal point. (b) A concave mirror will
cause parallel rays of light to converge to the focal point. (c) A concave lens will cause parallel rays to diverge as if
from the focal point. (d) A convex mirror will cause parallel rays to diverge as if from the focal point. The reflecting
surface of the mirror is shown by a thicker black line.




Two additional comments should be made relating to the term ‘focal length’. Firstly, a
series of two or more lenses and/or mirrors can also bring parallel incident light rays
to a focus, though obviously at a different point from that of any of the elements
independently. The focal length of such a series of optical elements is defined as the
focal length of a single lens that would bring the same rays of light to a focus at the
same angle of convergence. The effective focal length may therefore be quite
different from the actual distance between the optics and the focus. As we shall see
later, this allows long focal lengths to be compressed into short path lengths.

Secondly, it is sometimes common to quote the number that is obtained by dividing
the focal length of an optical assembly by the diameter of the bundle of parallel light
rays that is brought to a focus. In some optical systems, such as telescopes, the
diameter of this bundle of light rays is the same as the diameter of the main optical
element, though this is not always the case, particularly for most camera lenses. The
number obtained by calculating this ratio is referred to as the f-number, written f/#
or F/# where # is the numerical value.

What is the f-number of a 200 mm diameter telescope with a focal length of
2400 mm?

The f-number is 2400 mm/200 mm = 12. This would be written f/12 or F/12.

The story of telescopes began in 1608, when a Dutch optician, Hans Lippershey,
discovered that a distant object appeared larger when viewed through a combination
of two lenses: a relatively weak (i.e. long focal length) converging lens facing the
object and a strong (i.e. short focal length) diverging lens in front of the eye. This
combination of lenses was subsequently used by Galileo Galilei for looking at the
Moon, the planets and the stars, and it became known as the Galilean telescope
(see Figure 2.2).
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Figure 2.2 A Galilean (refracting) telescope. Parallel rays of light from a distant object
would be brought to a focus in the focal plane of the (converging) objective lens.
However, the (diverging) eyepiece lens intercepts these rays and renders them parallel
once more, but travelling at a larger angle to the optical axis. This leads to an increase in
the apparent angular size (i.e. the image is magnified with respect to the object). The final
image is a virtual image, located at infinity and is the same way up as the object.




Figure2.4 The 36 inch refractor
at the Lick Observatory, California.
(© UCO/Lick Observatory)

By about 1630 Johannes Kepler had replaced the diverging eyepiece lens with a
converging lens of very short focal length. This new combination of two converging
Ienses, the Keplerian telescope, has remained the principal form of construction of
refracting astronomical telescopes until this day, although many technological
improvements have been introduced to cope with the various problems that set limits
on the basic telescope’s performance. Figure 2.3 shows a diagram of a refracting
telescope of this type.
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Figure 2.3 A Keplerian (refracting) telescope. Parallel rays of light from a distant object
are brought to a focus by the (converging) objective lens and then diverge as they
approach the eyepiece lens. This converging lens renders the rays parallel, but travelling at
a larger angle to the optical axis. As in the Galilean telescope the virtual image is therefore
magnified with respect to the object, and is located at infinity. This image is inverted.

To optimize the light-gathering power of an optical telescope, the aperture D, of its
objective lens must be as large as possible. Unfortunately, this is easier said than
done. To begin with, there are serious technological problems in producing very large
lenses. To ensure that the initial block of glass, from which the lens is to be made, is
perfectly transparent and optically homogeneous throughout, the molten glass may
need several years (!) of gradual and controlled cooling. Next comes the problem of
grinding and polishing — it is not easy to sustain a perfect spherical curvature for a
very large focal length lens over the whole of its surface area. And when you have a
large lens, it is inevitably a thick lens, which therefore absorbs light, preferentially in
the blue and violet part of the spectrum. It is also a very heavy lens, which means
that it would have a tendency to sag under its own weight. In practice, usable
objective lenses with a diameter much larger than 1 metre cannot be made. Figure
2.4 shows a photograph of one of the largest refracting telescopes in the world, the
36 inch refractor at the Lick Observatory, California. Note the extremely long body
of the telescope in relation to its diameter.

Achieving high magnification with a telescope requires a long focal length £, but
limits on the maximum possible value of f; are set by the need to make the whole
instrument movable. It is clear from Figure 2.3 that the physical length of a Keplerian
refracting telescope cannot be less than f,. Hence, it would hardly be realistic to plan
a telescope with a focal length of 100 metres using this design! However, it is
important to remember that achieving high magnification is not necessarily always
useful, and sometimes it is better to have very short focal lengths. This will increase
the field-of-view of the telescope and make the images appear brighter, as the light is
less spread out. Designing optics with very short focal lengths leads to some optical
aberrations, which we discuss briefly.



Optical aberrations are not errors of manufacture, but are undesirable physical
characteristics of refracting and reflecting surfaces. For example, parallel rays of
light passing through different parts of a lens are not focused to the same point by
spherical surfaces; this is known as spherical aberration. This wouldn’t be a
problem except for the fact that spherical surfaces are relatively easy to produce,
whereas parabolic surfaces, which give a perfect focus, are much more difficult to
produce. Even from the same part of the lens though, waves of different frequency
(i.e. colour) are focused to different points; this is known as chromatic aberration.
By combining several lenses of different optical strengths and different materials,
chromatic aberration can be reduced, but the problems are formidable and increase
with the increasing size of the lenses and with the angle of the rays with respect to
the optical axis. Thus, in practice, refracting telescopes have only a relatively narrow
field-of-view within which the resolution is good.

Two other types of aberration that frequently affect images that lie off the optical
axis are coma and astigmatism. Coma arises because each annular zone of the lens
or mirror produces an off-axis image of a point source of light (or star) in the form
of a circular patch of light. These circles vary in position and diameter moving from
zone to zone, so that the combined ‘point-image’ in the focal plane is a fan-shaped
area formed from overlapping circles. Astigmatism occurs because light that falls
obliquely on a lens or mirror is focused not as a single point, but as two
perpendicular lines, each at different distances from the lens or mirror. At the best
focus position, the image of a point source will appear as an elliptical shape.

The net result of all these problems is that large refracting telescopes are no longer
built for serious astronomical work.

A lens is not the only object that can collect and focus light and thus produce visual
images. People have known about and used mirrors for much of recorded history,
but it took no less a genius than Isaac Newton to realize how a curved mirror could
be used to construct an optical telescope, and that this would overcome some of the
most important shortcomings of refracting telescopes.

As noted earlier, a concave spherical mirror will reflect parallel rays approaching
along its axis of symmetry so that they come together almost at one point (the
focus) lying between the reflecting surface and its centre of curvature. The main
advantage of focusing by reflection is that the angle of reflection is the same for all
wavelengths in the incident radiation. So there is no analogy to the chromatic
aberration that takes place in lenses. Hence, if we replace the objective lens of a N3
telescope with a reflecting spherical mirror, we have automatically and completely
eliminated the chromatic aberration on the input side of the telescope (we still have it
in the eyepiece). However, there is still spherical aberration because rays reflected
from the points further away from the axis of symmetry will be focused nearer to
the reflecting surface, as shown in Figure 2.5.

Figure 2.5 Spherical aberration of
a concave mirror (exaggerated for
clarity). The point to which parallel
rays of light are focused depends
The difference of focus shown in Figure 2.5 is exaggerated, to make the point clear.  on the distance of the incident rays

However, the spherical aberration of a converging mirror is always less than the from the optical axis. Incident rays
spherical aberration of a converging lens of the same focal length. For converging initially far from the optical axis are
mirrors that are only small parts of the hemisphere, it can usually be neglected. brought to a focus nearer to the
Unfortunately, by reducing the size of the mirror to reduce spherical aberration, mirror surface than rays travelling

some of the potential light-gathering power is lost, and the useful field-of-view is close to the optical axis.



also limited. Fortunately, there are two ways of dealing with this problem. We can
either choose a paraboloidal shape for the mirror (as in Figure 2.6) or we can
correct the focusing of a spherical mirror by introducing a suitable pre-distortion
into the incoming wavefront. This is done by placing in front of the mirror a
transparent plate of such a shape that it refracts the initially parallel rays near the
optical axis differently from those further away from it (as shown in Figure 2.7).
This correcting plate is known as a Schmidt plate, and the reflecting telescopes in
which a Schmidt plate is used are called Schmidt telescopes.

p arab%dal . spherical

Figure 2.6 The elimination of Figure 2.7 The Schmidt correcting plate for
spherical aberration using a mirror compensating for spherical aberration. Parallel
of paraboloidal shape. Parallel rays rays of light further from the optical axis are
of light are all brought to the same bent with respect to rays closer to the optical
focus, irrespective of their distance axis, by the Schmidt plate. The net result is
from the optical axis. that all rays are brought to a common focus.

In case you are wondering how you could actually see the image of a star produced
by a spherical converging mirror without being in the way of the oncoming light, this
problem was solved simply and neatly by Newton as shown in Figure 2.8. He put a
small flat mirror (the secondary mirror) just before the focus of the primary mirror
and at an angle of 45° to the optical axis. He thus moved the image towards the side
wall of the telescope tube, where he then fixed an eyepiece for direct observations. A
telescope using this arrangement is known as a Newtonian telescope.

concave
mirror small flat mirror

eyepiece lens

Figure 2.8 A Newtonian (reflecting) telescope. Parallel rays of light would be brought
to a focus at F,, but are intercepted by a small flat mirror. This moves the focal point to
one side, at F, , before the rays are rendered parallel by the eyepiece lens. The final
virtual image is located at infinity and is inverted with respect to the object.
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Figure 2.9 A Cassegrain (reflecting) telescope. Parallel rays of light would be brought
to a focus at F,, but are intercepted by a small convex mirror. This makes the rays of light

diverge somewhat so that they are not brought to a focus until the point Fey,. The rays
then diverge before entering the eyepiece lens and emerge from it parallel. The final
virtual image is once again at infinity and inverted.

A further improvement was introduced by the French astronomer Guillaume
Cassegrain, one of Newton’s contemporaries. His idea is illustrated in Figure 2.9
and is now used in many large modern telescopes. In place of Newton’s flat and
tilted secondary mirror, Cassegrain used a slightly diverging secondary mirror
placed on the optical axis of the primary mirror. The light is therefore reflected
back towards the centre of the primary mirror, where it passes through a hole on
the optical axis and then onto an eyepiece. This has the effect of extending the
path of the reflected light before it is brought to a focus at Fey.. The effective
focal length of the system of two mirrors is the focal length of a single mirror
having the same diameter as the objective and giving a cone of light converging at
the focus at the same angle as the two-mirror system. It is the effective focal
length of the optical system which determines the size of the image, and in a
Cassegrain telescope the effective focal length can be many times that of a
Newtonian telescope of the same length. Both Newtonian and Cassegrain
telescopes may be constructed using either paraboloidal objective mirrors or using
spherical objective mirrors with Schmidt correcting plates.

If a telescope is to be used with a photographic or electronic detector (see
Chapter 4), instead of the eye, then we must allow a real image to fall onto the
light-sensitive surface of the detector. In this case there is no point in using the
telescope with an eyepiece, since that produces a virtual image located at infinity.
(Remember, when you are actually looking through a telescope, the very final
image is that produced by the lens of your eye. This image falls onto your retina
and is therefore a real image. However, the final image produced by the zelescope,
with the eyepiece in place, is a virtual image, located at infinity.) The simplest
solution is to remove the eyepiece entirely and place the detector in the focal plane
of the mirror system (i.e. at F, in Figure 2.8 or at Fe in Figure 2.9). This also
has the advantage of removing any aberrations introduced by the eyepiece lens.
Alternatively, the secondary mirror may also be removed, and the detector may be
placed directly at the prime focus of the main mirror (i.e. at F,, in Figure 2.8 or
at F, in Figure 2.9). This has the additional advantage of removing one more
optical component, and with it the inherent aberrations and absorption losses that
it contributes. Figure 2.10a shows a photograph of a modern optical (reflecting)
telescope made to a Cassegrain design with an 8 m diameter parabolic primary
mirror. Figure 2.10b shows a much smaller Schmidt—Cassegrain telescope, of a
type you may use as a student.
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Figure 2.10 (a) The 8 m diameter
Gemini (North) Telescope on the
island of Hawaii. Thisis a
Cassegrain telescope with a
parabolic primary mirror. (Photo
courtesy of Gemini Observatory)
(b) A 40 cm diameter Schmidt—
Cassegrain telescope, of the type
often used for student projects.



In comparison with refracting telescopes, the reflectors start with the important
advantage of zero chromatic aberration. But they also score heavily on some aspects
of practical construction and technology. For very large diameters (10 m or more) it
is much easier to produce mirrors than lenses because the glass does not have to be
perfectly transparent or optically homogeneous and a mirror can be fully supported
on the rear surface. The grinding and polishing is carried out on only one surface,
which is finally covered by a thin reflecting layer, usually of aluminium. On the debit
side, there is greater loss of optical intensity in reflectors than in refractors, because
the reflecting surfaces are never 100% reflective and may have appreciable
absorption. Aluminized surfaces also deteriorate rather quickly and have to be
renewed every few years. On the other hand, a perfectly polished lens remains
serviceable for many years.

Having looked at the different designs of optical telescopes and the various problems
inherent in their construction, we now turn to the ways in which their performance
may be characterized. We consider five main performance characteristics, each of
which may be applied to both refracting telescopes and reflecting telescopes.

One of the key benefits of using a telescope is that it enables fainter objects to be
detected than with the naked eye alone. The light-gathering power of a simple
telescope used with an eyepiece is defined as

light-gathering power = (Do/D,)? 2.1)
where D, is the diameter of the objective lens (or mirror) and D, is the diameter of
the eye’s pupil, assuming that all the light passing through the objective enters the
eye. This is proportional to the light-gathering area of the objective lens or mirror of
the telescope.

Compare the light-gathering powers of three telescopes with objective mirrors
of diameter D, = 5 cm, 25 cm and 1 m. Assume that the eye has a pupil
diameter of D, = 5 mm.

The light-gathering power of a telescope is given by the ratio (DO/DP)z. Hence
for the three telescopes we have, (converting all diameters to mm):

For D, =5 cm (Dy/Dp)? = (50 mm/5 mm)? = 102
For D, =25 cm (DO/DP)2 = (250 mm/5 mm)? = 2.5 x 103
ForD,=1m (Dy/D,)? = (1000 mm/5 mm)? = 4 x 10%,

Clearly, the larger the aperture the more light is collected and focused into the image,
and therefore fainter stars can be detected.

The field-of-view of a telescope is the angular area of sky that is visible through an
eyepiece or can be recorded on a detector, expressed in terms of an angular diameter.
When a telescope is used with an eyepiece, the angular field-of-view is equal to the




diameter of the field stop (i.e. the diameter of the aperture built into the eyepiece)
divided by the effective focal length of the primary mirror or lens. In symbols:

6 = Df, (2.2)

where the angular diameter of the field-of-view, 6, is in radians.

What is the field-of-view, in arcminutes, of a telescope whose focal length is
3050 mm when used with an eyepiece with a field-stop diameter of 23.0 mm?

The angular diameter of the field-of-view is 8 = D/f, = 23.0 mm/3050 mm =
7.54 x 1073 radians. Converting to degrees, this is
7.54 x 1073 radians X (180/7) degrees radian—! = 0.432° = 25.9’.

When a telescope is used with a detector in place of an eyepiece, the determining
factor here is the linear size of the detector itself, rather than the field-stop diameter.

What is the maximum focal length telescope that could accommodate a 1° field-
of-view on a standard 35 mm film frame?

1° = (n/180) radians, so the limiting focal length is given by 35 mm/(7/180) =
2005 mm, or about 2.0 m. A focal length longer than this would reduce the
field-of-view.

You may be familiar with the scales that appear on terrestrial maps or images
obtained with microscopes, possibly stated as 1: 100 000 or 1 mm corresponds to

1 um. Scales such as these indicate how the size of the reproduction compares to the
real thing. Image scales are no less important in astronomy, though they are usually
stated in a different form, as we now explain. Imagine for a moment that you have
the use of a telescope that allows you to observe Saturn and its ring system. It must
be very highly magnified to show so much detail, mustn’t it? Well, consider the size
of the image. It is in fact greatly demagnified, by such a large factor that the image
of the 120 000 km diameter planet fits on the light-sensitive surface of your eye only
a few millimetres across. The same would be true if you recorded the image on
photographic film or with a digital camera. Yet you know you can see more detail
than with the naked eye. This simple example emphasizes that the important
magnification in much astronomical imaging is not the linear magnification described
above for terrestrial maps, but rather the angular magnification. The angular
magnification indicates by what factor the angular dimension (e.g. angular diameter)
of a body is increased. So if you were to observe Saturn through a telescope, you
would be benefiting from a high angular magnification which makes the image appear
larger even though it is squeezed into the tiny space of your eyeball.

The angular magnification M of an astronomical telescope, used visually, is defined
as the.angle subtended by the image of an object seen through a telescope, divided by
the angle subtended by the same object without the aid of a telescope. By geometry,
this can be shown to be equivalent to

M = fJfe (2.3)

where f;, is the effective focal length of the objective lens or mirror system and f, is
the focal length of the eyepiece lens.

Remember that & radians
corresponds to 180°.



What is the angular magnification of a Newtonian reflecting telescope with a
mirror of focal length £, = 10 m and an eyepiece of focal length f, = 10 cm?

The angular magnification is equal to the ratio f,/f;. Thus we have
M = (10 m)/(0.1 m) = 100. The larger the focal length of the primary mirror,
the greater will be the angular magnification of the telescope.

Notice that the angular magnification and field-of-view of a telescope both depend on
the focal length of the objective lens or mirror. However, increasing f, will increase
the angular magnification but decrease the field-of-view, and vice versa.

The nearest equivalent definition to angular magnification that is applicable to
telescopes used for imaging onto a detector is the image scale (sometimes called the
plate scale). Because of the importance of angular measures, the image scale quoted
by astronomers indicates how a given angular measure on the sky corresponds to a
given physical dimension in an image. The most common convention is to state how
many arcseconds on the sky corresponds to 1 mm in the image.

Fortunately, it is very easy to calculate the image scale for any imaging system, as it
depends on only one quantity: the focal length £, of the imaging system. The image
scale ] in arcseconds per millimetre is given by
1
1_

I / ar mm-! =
o (7 7 mm) x tan(] arcsec) (2.4)

Note that as the image on the detector becomes larger, the numerical value of /
becomes smaller.

A certain telescope has an objective with an effective focal length of 3000.0 mm.
What is the image scale in the image plane?

First note that tan(1 arcsec) = 4.848 x 1079, so 1/tan(1 arcsec) = 206 265.
Hence, I = (206 265/3000.0) arcsec mm~! = 68.755 arcsec mm-~!. (For small
angles, tan 6 = @ in radians.)

The number 206 265 is quite useful in astronomy, as it is the number of
arcseconds in 1 radian of angular measure, given by (180 x 60 x 60)/7.

The image of a point-like source of light (such as a distant star) obtained using a
telescope will never be a purely point-like image. Even in the absence of aberrations
and atmospheric turbulence to distort the image, the image of a point-like object will
be extended due to diffraction of light by the telescope aperture. The bigger the
aperture, the smaller is the effect, but it is still present nonetheless. The intensity of
the image of a point-like object will take the form shown in Figure 2.11a. The
structure shown here is referred to as the point spread function (PSF) of the
telescope. Lens or mirror aberrations and atmospheric turbulence will each cause the
width of the PSF to broaden, and may cause its shape to become distorted too.
However, in the ideal case when neither aberrations nor turbulence is present, the
telescope is said to be diffraction-limited, and its PSF has the form shown. The
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Figure 2.11 The image of a point-like object is not point-like even under ideal
conditions. (a) The vertical direction represents image intensity. The point spread
function of a point-like object under ideal conditions consists of a central peak
surrounded by concentric ripples. The two-dimensional PSF has the circular symmetry of
the telescope aperture. (b) A slice through (a) along one axis.

width of the PSF, in this idealized case, is inversely proportional to the aperture
diameter of the telescope.

Using the idea of the diffraction-limited PSF, we can also define the (theoretical)
limit of angular resolution for an astronomical telescope. This is the minimum
angular separation at which two equally bright stars would just be distinguished by
an astronomical telescope of aperture D, (assuming aberration-free lenses or mirrors
and perfect viewing conditions). As shown in Figure 2.12b, at a certain separation,
the first minimum of the PSF of one star will fall on the peak of the PSF of the other
star. At this separation, the two stars are conventionally regarded as being just
resolved.

(a) (b) ' ©

The angular separation corresponding to the situation in Figure 2.12b is given by

a. = 1.224/D, (2.5)

where o is the limit of angular resolution measured in radians and A is the average
wavelength of light contributing to the image. As noted above, the limit of angular
resolution arises due to diffraction of light by the telescope aperture and represents a
fundamental limit beyond which it is impossible to improve.

Figure 2.12 The images of
the two stars in (a) are clearly
resolved, whereas those in (¢)
are unresolved. In (b), the first
minimum of one PSF coincides
with the peak of the other PSF.
At this separation the stars are
said to be just resolved.

Equation 2.5 is often known as the
Rayleigh criterion.



A certain ground-based reflecting telescope contains aberration-free optical
components and has a primary mirror aperture 500 mm in diameter. If two
stars of equal brightness are observed through a red filter that transmits only
light of wavelength 650 nm, what is the theoretical minimum angular
separation (in arcseconds) at which these two stars could be just resolved?

The theoretical angular limit of resolution is given by the formula
o, = 1.224/D,,
hence 1n this case:
o = (1.22 x 650 x 1072 m)/(0.50 m) = 1.6 X 1079 radians
So, o = (1.6 % 1079 x 180/m) degrees = 9.1 X 1075 degrees.
Or, o, =9.1x 105 x 3600 arcseconds = 0.33".

In practice, two stars this close together are unlikely to be resolved using a
conventional ground-based telescope, whatever its aperture diameter, because of
the degradation of angular resolution imposed by turbulence in the atmosphere.
This makes all single stars appear to be of a small, but finite, angular size, typically
of order 1”7 across. In effect therefore, atmospheric turbulence broadens the PSF
of the telescope. In fact, in most ground-based observatory telescopes, the
dominant contribution to the size of the PSF is generally from atmospheric
turbulence rather than imperfections in the telescope optics or the theoretical limit
to angular resolution imposed by diffraction. Hence, the diameter of the actual point
spread function is a common way of quantifying the astronomical seeing. At the
very best, the seeing from a good astronomical site is around 0.5”, but at most
observing sites it may be a few arcseconds even on good nights.

If it’s never possible to achieve a diffraction-limited point spread function,
because of atmospheric turbulence, what’s the point of building a ground-
based optical telescope with a mirror diameter of 5 m or more?

A 5 m mirror will have a theoretical limit of angular resolution of about 0.03”
(i.e. 10 times smaller than the example above, due to its 10 times larger
mirror). This will be degraded by atmospheric turbulence to produce an
angular resolution of order ~1”. However, the advantage of the 5 m mirror is
that its light-gathering power is 100 times greater than that of a mirror of 10
times smaller diameter. So much fainter astronomical objects may be detected.

Despite what has just been said, there is a technique now available at some
professional observatories for reducing the effects of poor seeing, and attaining
close to the theoretical limit of angular resolution. The technique of adaptive optics
refers to a process whereby corrections to the shape of the primary or secondary
mirror are made on a rapid timescale (hundredths of a second) to adjust for the
image distortions that arise due to atmospheric turbulence. A relatively bright
reference star is included within the field-of-view, or an artificial laser guide star is
produced by directing a laser into the atmosphere. The adaptive optics system then
rapidly adjusts the mirror under software control in order to make the size of the
PSF of the reference star as small as possible. By correcting the reference star in
this way, all other objects in the field-of-view have their PSFs similarly corrected,
and an angular resolution close to the theoretical limit may be obtained.




A telescope with the largest light-gathering power, best point spread function and
optimum image scale and field-of-view is of little use unless it is mounted in an
appropriate way for tracking astronomical objects across the night sky. It is essential
that a telescope can be pointed accurately at a particular position in the sky and
made to track a given position as the Earth rotates on its axis as noted in Chapter 1.

Broadly speaking there are two main types of mounting for astronomical telescopes,
known as alt-azimuth and equatorial. An alt-azimuth mounting (alt-az for short) is
the simplest to construct. It allows motion of the telescope in two directions, namely
the altitude or vertical direction and the azimuth or horizontal direction (Figure
2.13a). Although simple and relatively cheap to construct, it has the drawback that
to accurately track an astronomical object such as a star or galaxy requires the
telescope to be driven in both axes simultaneously at varying speeds. Given the
widespread availability of computer software to do the job this is not a problem in
practice. However, another limitation is that the image will rotate as the telescope
tracks, and therefore the detector must also be counter-rotated during any exposure
in order to produce an un-trailed image.

The other type of mounting is known as an equatorial mounting. In this case, one
axis of the telescope is aligned parallel to the rotation axis of the Earth (the so called
polar axis), and the other axis (the so called declination axis) is at right angles to
this (Figure 2.13b). This has the advantage that once the telescope is pointed at a
particular star or galaxy, then tracking of the object as the Earth rotates is achieved
simply by moving the telescope at a constant speed around the polar axis only.
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Figure 2.13 (a) An alt-azimuth telescope mounting. (b) An equatorial telescope mounting.



For a given location on the Earth, what determines the angle between the
polar axis of an equatorially mounted telescope and the horizontal?

The angle between the polar axis and the horizontal is equal to the latitude
of the location.

An equatorial mounting is relatively expensive to construct, but it is much
simpler to drive and point a telescope with such a mounting, particularly without
computer assistance, and the field does not rotate during the course of an
exposure.

At what speed must a telescope be moved around the polar axis of an
equatorial mounting in order to counteract the effect of the Earth’s
rotation?

The telescope must be rotated at a rate of one revolution (360°) for every
sidereal day (23 hours 56 minutes 4 seconds) in the opposite sense to that
in which the Earth rotates.

e Converging lenses or mirrors cause parallel beams of light to be brought to a
focus at the focal point, situated at a distance of one focal length beyond the
lens or one focal length in front of the mirror. Diverging lenses or mirrors
cause parallel beams of light to diverge as if emanating from the focal point
of the lens or mirror. Light paths are reversible, so a converging lens or
mirror may also act as a collimator and produce a parallel beam of light,

e The simplest astronomical telescopes are refracting telescopes comprising
either one converging lens and one diverging lens (Galilean telescope), or
two converging lenses (Keplerian telescope). The effectiveness of refracting
telescopes is limited by the problems involved in constructing large lenses,
and their spherical and chromatic aberrations which are, to some extent,
unavoidable.

e Reflecting telescopes, such as the Newtonian and Cassegrain designs, make
use of a curved (concave) objective (primary) mirror to focus the incoming
light. Reflecting telescopes are free from chromatic aberrations. Spherical
aberrations can also be greatly reduced by using a paraboloidal mirror or a
Schmidt correcting plate.

e Large-diameter reflecting telescopes are easier to construct than similar sized
refractors. Also, by using the Cassegrain design, a long focal length (and
hence high angular magnification) can be contained in a relatively short
instrument.

e When reflecting telescopes are used with photographic or electronic
detectors, the eyepiece is removed, and sometimes so also is the secondary
mirror. This removes the aberrations and absorption losses that are due to
these components and allows a real image to fall directly onto the light- ]
sensitive surface of the detector.



e The main parameters of an optical telescope are its light-gathering power, its
field-of-view, its angular magnification or image scale and its limit of angular
resolution.

e The angular size of the point spread function of a telescope can be used to
quantify the astronomical seeing. The technique of adaptive optics can
compensate for the effects of atmospheric turbulence and produce images
whose PSFs are close to being diffraction-limited.

e A telescope may have an alr-azimuth or equatorial mounting. The former is
less complex to construct, but with the latter it is simpler to point and drive a
telescope.

QUESTION 2.1

Summarize how the following characteristics of a visual telescope

(i) light-gathering power,

(i) field-of-view,

(iii) angular magnification,

(iv) limit of angular resolution,

depend on the aperture D, and the focal length f; of its objective lens (for a given
eyepiece of focal length f.).

QUESTION 2.2

(a) Calculate the ratio of the light-gathering power of a reflecting telescope of
diameter D, = 5.0 m to that of a refractor of diameter 1.0 m (neglect losses of light,
mentioned in the text).

(b) Compare the (theoretical) limits of angular resolution of these two telescopes (at
the same wavelength).

QUESTION 2.3

(a) The atmospheric seeing at a particular observatory site is 1 arcsecond (17).
What is the aperture of a diffraction-limited telescope (at a wavelength of 485 nm)
which would have a resolving power equivalent to this seeing?

(b) Why then do you think that astronomers build such large and expensive
telescopes for use in ground-based observations?

QUESTION 2.4

List the important advantages and disadvantages of reflecting telescopes compared
to refracting telescopes.

QUESTION 2.5

What is the Schmidt correcting plate and how does it improve the performance of a
reflecting telescope? (b) Draw a diagram illustrating how a Cassegrain telescope
equipped with a Schmidt correcting plate focuses light from a distant object.




QUESTION 2.6

(a) Calculate the image scale in the focal plane of a 300 mm diameter telescope
whose optical system is stated as F/10.

(b) The angular diameter of the planet Mars varies from about 14” to 25” depending
on its distance from the Earth. Calculate how large the image would be in the focal
plane of a 300 mm diameter, F/10 telescope at its closest and furthest.




3 SPECTROGRAPHS

Telescopes may simply be used to collect the light from an astronomical object in
order to measure its position, brightness or spatial distribution. However, it is often
far more instructive to examine the spectrum of light from an object such as a star
or galaxy, namely the distribution of light intensity as a function of wavelength.

The spectrum of a light source may be revealed in several ways, all of which involve
making light of different wavelengths travel in different directions, a process which
we term dispersion. There are two principal ways of dispersing light: using either a

prism Or a grating.

The simplest way to disperse light is to use a prism. When light
enters a prism, it is no longer travelling in a vacuum, and its speed
decreases. If the incident wavefront is travelling at an angle to the
surface of the prism, which is easy to arrange because of its
angled faces, then the propagation of the part of the wavefront in
the prism is retarded, thus bending the wavefront and changing its
direction of propagation through the prism (Figure 3.1). This
phenomenon is referred to as refraction.

The speed of light in most materials depends on frequency, so the
change in direction also depends on frequency, and hence different
colours become separated. Figure 3.2 illustrates the situation when

" a beam of white light (i.e. a mixture of all colours) encounters a
triangular glass prism. The white light is dispersed at the air—glass
boundary and, because of the shape of the prism, the different
colours undergo further dispersion at the glass—air boundary as
they leave the prism.

N\ — range of colours
red to violet

Figure 3.2 A beam of white light enters a
triangular prism as shown. Red light has a lower
frequency (longer wavelength) than violet light and
the direction of the red beam is altered less than the
direction of the violet beam. Consequently the white
light spreads into its constituent colours within the
prism. The different colours are further dispersed on
leaving the prism.

N material 1
G\, wave speed = vy

A material 2
wave speed = v,

Figure 3.1 The wavefront AC is incident upon the
surface AC’. In the time that it takes the wavefront to
travel the distance CC’ in material 1, the wavefront
has travelled a shorter distance AA” in material 2,
thus changing the direction of propagation. The
distance AA’ depends on the speed of light in
material 2, which depends on the frequency of the
radiation, and hence the amount of refraction also
depends on frequency.



When light, or indeed any type of wave, passes through a narrow aperture, it will
spread out on the other side. This is the phenomenon of diffraction. For example
Figure 3.3 shows the diffraction of water waves in a device called a ripple tank. The
extent to which waves are diffracted depends on the size of the aperture relative to
the wavelength of the waves. If the aperture is very large compared to the
wavelength, then the diffraction effect is rather insignificant. So although sound
waves may be diffracted by a doorway, light waves are not appreciably diffracted
by doorways because the wavelength of visible light (about 400 to 700 nm) is very
small in comparison to the width of the doorway. But light is diffracted, and
provided the slit is narrow enough, the diffraction will become apparent.

Figure 3.3 The diffraction of
water waves in three different
cases. As the slit width is reduced,
the amount of diffraction increases.

The phenomenon of diffraction allows us to appreciate the effect of an aperture
on the propagation of waves, however it says nothing about what will happen
when waves from different sources or from different parts of the same source
meet. For this, the principle of superposition must be used. The principle of
superposition states that if two or more waves meet at a point in space, then the
net disturbance at that point is given by the sum of the disturbances created by
each of the waves individually. For electromagnetic radiation the disturbance in
question can be thought of as variations in electric and magnetic fields. The effect
of the superposition of two or more waves is called interference.

To begin with, we consider the diffraction of monochromatic light by a pair of
closely spaced, narrow slits as shown in Figure 3.4. Plane waves of constant
wavelength from a single, distant, source are diffracted at each of two slits, Sy
and S,. Because the waves are from the same original source they are in phase
with each other at the slits. At any position beyond the slits, the waves diffracted
by S; and S, can be combined using the principle of superposition. In the case of
light waves, the resulting illumination takes the form of a series of light and dark
regions called interference fringes and the overall pattern of fringes is often
referred to as a diffraction pattern. (Note, however, that the same pattern is also
sometimes referred to as an interference pattern. The reason for the dual
nomenclature is that both diffraction and interference are necessary in order to
generate the observed pattern, so either is an appropriate description.)

In order to appreciate how the interference fringes arise consider Figure 3.4a.
When the wave arriving at a point on the screen from slit S; is in phase with the
wave arriving from S,, the resultant disturbance will be the sum of the
disturbances caused by the waves individually and will therefore have a large
amplitude (as shown in Figure 3.52). This is known as constructive
interference. When the waves are completely out of phase, the two disturbances
will cancel. This is known as destructive interference (as shown in Figure 3.5b).




e

On the screen, constructive interference will cause relatively high intensity, while
destructive interference will lead to low intensity, hence the observed pattern of
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Figure 3.4 (a) Diffraction and interference of light produced by two narrow slits S; and
S,. (b) Bright and dark interference fringes on the screen.
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Figure 3.5 (a) Constructive and (b) destructive interference.
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The general condition for constructive interference at any point is that the path
difference between the two waves is a whole number of wavelengths, i.e.

path difference = ni, where n =1, 2, 3... 3.1

The general condition for destructive interference is that the path difference is an odd
number of half-wavelengths, i.e.

path difference = (n+3)A, wheren=1,2,3... (3.2)

The result of this is that when a source of light consisting of a range of wavelengths
is used, the positions of constructive interference will be different for each
wavelength. In other words, the combination of diffraction and interference produced
by a pair of slits has the effect of dispersing light into its constituent wavelengths.

The same principles also apply when not two but a large number of equally spaced
slits are used. Such diffraction gratings typically have several hundred slits per
millimetre and give much sharper diffraction patterns than a simple double slit. The
individual fringes can also be much further apart, so that dispersed wavelengths can
be more widely separated. The details of this phenomenon, as applied to astronomical
spectroscopy, are discussed below.

Although the above description of diffraction has been in terms of light passing
through a series of slits in a (transmission) diffraction grating, the type of grating
which is currently most common in astronomy is a reflective diffraction grating or
reflection grating. This again exploits the wave properties of light, in this case by
making adjacent sections of a wavefront travel extra distances as it is reflected off a
non-uniform surface. The non-uniform surface is actually a very precisely made
mirror into which steps or grooves have been cut; as shown by the cross-section in
Figure 3.6. The wavefront propagating from groove A and the wavefront propagating
from groove B will constructively interfere with each other only if the difference in
the lengths of the light paths, from L to L”, is an integer number of wavelengths.
From the figure, the path difference is d'sin & + d'sin B, and the condition for
constructive interference can therefore be written

grating (b) \ grating
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Figure 3.6 (a) For a wavefront incident on the grating at an angle o to the normal, the portion of the wavefront reaching
groove B has to travel an extra distance LL’ = d sin & compared to the portion of the wavefront reaching groove A, where d is
the distance between successive grooves. (b) Similarly, for light reflected from the grating at an angle f3 to the normal, the
portion of the wavefront reflected from groove B has to travel an extra distance L’L” = d sin 8. The total path difference from

L to L” is therefore d(sin ¢ + sin f3).




d(sin o + sin ) = nA (3.3)

This is such an important equation for astronomers that it is given a name, the
grating equation. The integer » is called the spectral order, and quantifies
how many wavelengths of path difference are introduced between successive
grooves on the grating.

Now consider the grating equation. The groove spacing d is a feature of the grating,
and the angle of the incident light o will be the same for all wavelengths, so the only
remaining variables are the diffraction angle 8 and the wavelength A. It is therefore
clear that 8 must depend on wavelength, which is to say that the grating is a means
of sending light of different wavelengths in different directions, i.e. producing a
spectrum.

Imagine you have a grating spectrograph whose grating has 1000 grooves per
mm, and is set up with the light incident at an angle of 15° to the grating
normal. Calculate the angles at which light of: (i) 400 nm, (ii) 500 nm, and (iii)
600 nm will be diffracted in the first spectral order. You may find it convenient
to express the wavelength and the groove spacing d in units of microns.

Rearrange the grating equation d(sin & + sin ) = nA and write
sin f = nA/d — sin &

Then substitute in the values d = 0.001 mm = 1 um, o = 15° and n = 1 to give
sin § = A/um — 0.2588. We can then calculate the diffraction angles 3 as
follows:

For A = 400 nm = 0.4 um, we have sin = 0.1412, therefore 8 = 8.1°.
For A = 500 nm = 0.5 um, we have sin f§ = 0.2412, therefore = 14.0°.
For A = 600 nm = 0.6 um, we have sin 8 = 0.3412, therefore § = 20.0°.

One feature of the spectrum produced by a diffraction grating is that multiple
spectra are produced, corresponding to different spectral orders. For example,

it is obvious from the grating equation that for a given spectrograph set-up, i.e. for
some particular values of 4 and ¢, light at 700 nm in the first spectral order (n = 1)
travels at the same diffraction angle f as light at 350 nm in the second spectral order
(n = 2). Depending on the sensitivity of the detector and the relative flux in the
source at overlapping wavelengths, it may be necessary to use a filter to block out
the unwanted wavelengths.

It is instructive to ask how the choice of grating and spectral order affects the If your calculus is too rusty for you
dispersion of the spectrum, i.e. the amount by which the light is spread out. The to follow this, then skip the steps
angular dispersion is a measure of how large a change AB in the diffraction angle ~ and just note the result.

results from a change A4 in wavelength, so we want to know AB/AA. Calculus

makes the calculation of AB/AA very straightforward, so we shall use that approach

here. The grating equation can be rearranged as sin 8 = nA/d — sin . Using

calculus, we can then write

of 9B dsinfi _ 1 dsinf_ 1 =n
oA dsinf o  osnB/ofp oA cosBd (3.4)




This indicates that the angular dispersion can be increased by working in higher
spectral orders, i.e. by increasing n, or by using gratings with narrower groove
spacings d (i.e. more grooves per millimetre such that d is smaller). Hence a grating
with 600 grooves per millimetre will have twice the dispersion of a grating with

300 grooves per millimetre, if they are both used in the same spectral order. Of
course, a grating of 300 grooves per millimetre used in second order (n = 2) will
give the same dispersion as a grating with 600 grooves per millimetre used in first
order (n = 1).

In the last few years, a new type of diffraction grating has become common in
astronomy. The reflective diffraction grating described above works by introducing
a different path length between parts of a wavefront striking different grooves of the
grating. A volume phase holographic grating (VPH grating), in contrast, is a
transparent medium, usually a layer of gelatine sandwiched between two glass
plates. The refractive index of the gelatine varies in a carefully defined way from
point to point. VPH gratings can offer superior efficiency and versatility to reflection
gratings, and can be produced in the much larger sizes needed for the next
generation of large telescopes.

Although spectrograph designs vary widely, most consist of a few key elements
which we describe below. You may be surprised to learn that a slit is not a key
element of a spectrograph, but it is often a useful one, as we shall see later.

We begin in the focal plane of the telescope, where an image of the sky is formed by
the telescope optics. The rays of light associated with each object are converging as
they approach the focal plane, and they diverge beyond it (Figure 3.7). In this
condition they are not suitable for dispersing; first they must be rendered parallel.
This is achieved with a collimator, which is a lens or mirror of focal length £,
placed a distance f,,; beyond the focal plane. The focal plane of the telescope is
therefore at the focal point of the collimator, and hence the rays of light emerging
from the collimator are made parallel to one another, i.e. collimated.

The collimated beam is then dispersed using one of the dispersing elements
discussed previously, i.e. a prism, reflective diffraction grating, or VPH grating. The
dispersing element takes the bundle of parallel rays, and produces a separate parallel
bundle for each wavelength present in the object, each bundle travelling in a slightly
different direction. Each bundle consists of light of a single wavelength, i.e. it is
monochromatic.

The diverging bundles of parallel rays must now be brought to a focus. This is
achieved with another lens or mirror called a camera lens or mirror, whose focal
length is f.,m, and which therefore focuses each bundle of parallel rays onto its
image plane a distance f,,, beyond the lens or mirror. Because each monochromatic
bundle is travelling in a different direction, each is focused onto a different part of
the image plane. The image in this plane is therefore a spectrum.

Note that we have not discussed a spectrograph slit at all, and that is intentional.
From the discussion above, you should see that a spectrograph produces a new
image of whatever image lies in the telescope focal plane, but in a new position that
depends on its wavelength. If you had a star-like object giving out all its light at
only three wavelengths, then in the spectral image plane you would see three round
star-like images, each corresponding to one of the three different wavelengths
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Figure 3.7 (a) Spectrograph layout showing the focal plane of the telescope, the
collimator lens, dispersive element (i.e. prism or grating), camera lens, and spectral image
plane. (b) Views of a ‘star’ emitting three strong emission lines, first in the focal plane of
the telescope where a single polychromatic image can be seen, and secondly in the
spectral image plane where three separated monochromatic images are visible. (c) As for
(b), but with a slit placed in the focal plane of the telescope to restrict the width of each
monochromatic image of the star in the spectral image plane.

(see Figure 3.7b). If these three wavelengths are very similar to one another, then the
three images in the spectrum would not be very far apart. Indeed they might be so
close together that they were almost indistinguishable.

How then could you tell how much light there is at one wavelength compared with
another? You would have two choices. You might be able to increase the dispersion to
move the three images further apart, either by observing at a higher spectral order or
by using a grating with a finer groove spacing, as was discussed earlier. If this is not
practical, then you have only one other possibility, which is to block off part of each
monochromatic image so that they no longer overlap. This is achieved by putting a
mask in the focal plane of the telescope where the polychromatic (white-light) image
is first formed. The mask needs to block off only the edges of the image, not the top
and bottom as well, so a long, narrow mask can be used. Astronomers call such a
mask a slit or entrance slit. The result of doing this is shown in Figure 3.7c.

The spectra of real astronomical objects do not just consist of three wavelengths, but
often contain a number of spectral lines (either in absorption or emission),
superimposed on a continuum spectrum. In order to distinguish between spectral
lines of similar wavelength, a suitably narrow slit is needed. If the slit is made
narrower, each monochromatic image, and hence each spectral line, becomes
narrower and hence more easily distinguished. Unfortunately, the amount of light
allowed to enter the spectrograph is also reduced, and hence the intensity of the
image decreases.
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Figure 3.8 Animage showing
the spectra of two bright stars (B
and E) and three faint ones (A, C
and D). The spectral direction runs
horizontally, and the spatial
direction (along the slit) runs
vertically in this image. The two
bright vertical lines, (i) and (ii),
correspond to two emission lines in
the spectrum of the sky, which fills
the slit.

(i)

Astronomers often face the trade-off of having the slit narrow enough to allow
them to distinguish neighbouring wavelengths, but wide enough to provide an
adequate number of photons. In practice, the width of the slit is often matched
to the seeing conditions.

The result of using a slit like this is shown in Figure 3.8, where the spectra of
several stars that lie along the slit in the focal plane of the telescope are all recorded.

Modest sized telescopes (with aperture diameters of up to a few tens of cm) allow
the spectra of bright stars to be obtained. Although faint stars can be seen through
the telescope, once their light is dispersed by the diffraction grating or prism, the
amount of light falling on any single part of the image plane is greatly reduced. This
is because the light is spread out in the spectrum, though in principle this does not
lead to any loss of photons. However, the large number of optical elements in the
spectrograph does contribute to real losses of intensity. For example, the entrance
slit sometimes has to be set narrower than the apparent size of the star due to
atmospheric seeing, with the result that only a fraction of the starlight enters the
spectrograph.

Why are you not completely free to make the entrance slit wider to allow more
light through?

Making the slit wider also makes the spectral lines wider in the imaged
spectrum, so using a wider slit degrades the spectral resolution. There is a
trade-off between getting more light into the spectrograph, which benefits from
a wider slit, and getting the spectral resolution required to distinguish the
spectral lines of interest, which benefits from a narrower slit.

Once the light is inside the spectrograph, its intensity is further diminished: the
typical reflectance of each aluminized surface is only ~85% in visible light, each




air-glass interface typically transmits only 96% of the light, and the diffraction of light
into different spectral orders by a grating often means that only 20% to 60% of the
light ends up in the spectral order you are trying to observe. (These percentages can
be improved by applying special coatings to the surfaces, which may improve
reflectances to 95% and transmissions to 99%.)

If each air-glass interface transmits only 96% of the incident intensity, what
fraction of the light incident on a lens will be transmitted?

A lens has two air—glass interfaces, one where the light enters and one where it
exits. If the intensity of the incident light is [, then the fraction of light
transmitted by the first surface is 0.96/;. At the second surface, the incident
intensity is therefore 0.961,, of which 96% will be transmitted, so the total
transmission is 0.96 x 0.96], = 0.92[,. That is, such a lens transmits ~92% of
the incident light.

The guidelines for a particular telescope and spectrograph should indicate how long
an exposure is needed to record a certain number of photons from a star of a given
brightness, according to certain assumptions about the slit width, the seeing
conditions, and the zenith distance of the object under investigation. The photon count
rate will also depend on the dispersion of the spectrograph set-up, i.e. how much it is
spread out. Clearly there are numerous factors that affect whether the recorded
spectrum will contain the number of photons needed in order to be able to distinguish
the spectral lines you want to see from the noise inherent in the observations.

Although the simple, single-slit spectrograph described above is the type you are
most likely to find on a small telescope, there are other more complex designs
available. Each of these has its own role to play in astronomical observations.

An echelle spectrograph has a second dispersing clement, either a second grating
or a prism, which disperses the light at right angles to the direction of dispersion
produced by the main grating. Without going into details, the effect is to produce a
spectral image that consists of a stacked serics of spectra (see Figure 3.9). Each of
the stacked spectra represents a part of the spectrum of the object, spanning only a
very narrow range of wavelengths. You can imagine joining these individual spectra
end to end in order to assemble the complete spectrum of the object.

Figure 3.9 The spectral image
produced by an echelle
spectrograph. Each band
comprises a small part of the
spectrum covering only a very
narrow range of wavelength. (The
vertical streak is a fault on the
detector.)



What do you suppose are the advantages of an echelle spectrograph? What are
its disadvantages?

An echelle spectrograph enables us to cover a large wavelength range at a high
spectral resolution. However, since the light is dispersed over a large part of the
image plane, the intensity at any point in the spectrum is very low, so these
instruments can only be used successfully on very large telescopes or with
bright stars.

Integral field unit spectrographs and multi-object fibre-fed spectrographs use
optical fibres to feed light from various parts of the focal plane of the telescope
through gratings to produce many individual spectra on the same detector. In an
integral field unit, the fibres are closely packed together so that a spectrum from
every point on a two-dimensional image of an extended object may be produced.
Such instruments are useful for mapping the velocity field across a spiral galaxy, for
instance. In multi-object fibre-fed spectrographs, the individual fibres may be
automatically positioned at any location in the field-of-view, to feed the light of many
hundreds of individual objects onto the spectrograph (see Figure 3.10). These
instruments are useful for obtaining the redshifts of hundreds of galaxies within a
single image, for instance. In both types of instrument, the resulting image consists
of a series of individual spectra stacked one above another, essentially covering the
whole of the detector.

An alternative to using a fibre-fed spectrograph is to use a multi-slit spectrograph.
This technique is identical to single-slit spectroscopy as described earlier, except
that, as implied by its name, there are multiple slits in the field-of-view. Each of
these slits allows light from a different object to pass into the spectrograph and form
a spectrum on the detector. In order to align the slits in their correct positions, a
separate mask is usually prepared for each field to be observed with the slits simply
drilled in the appropriate positions. Multi-slit spectroscopy has none of the
throughput losses that are associated with passing light through optical fibres. I
However, a disadvantage of the method is that the field-of-view is usually smaller
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Figure 3.10 (a) The 400 optical fibres on the 2dF (two degree field) instrument at the Anglo—Australian Telescope.

(b) A close-up of part of the field plate showing some of the fibres positioned in the field-of-view.

(Both pictures © Anglo-Australian Observatory.)

(c) A schematic diagram showing the head of each optical fibre, clamped accurately in position on the ficld plate using a
strong magnet. Light from the telescope enters the microprism and then passes down the optical fibre to be dispersed by a
grating and the spectrum fed onto a detector.




than for fibre spectroscopy. A modern multi-slit spectrograph may have a field-of-
view that is only around 10’ in diameter. This may be compared with the 2° diameter
field of the 2dF shown in Figure 3.10. Also, in order to prevent spectra from
overlapping on the frame, the number of spectra which can be recorded
simultaneously is usually less than 50 rather than the 400 that are possible with a
device like the 2dF.

e In an astronomical spectrograph light may be dispersed using either a prism, a
reflective diffraction grating or a volume phase holographic diffraction grating.

e The grating equation quantifies the amount by which light of different
wavelengths is dispersed by a grating having a particular groove spacing.

e In a spectrograph, light is first collimated before passing through the dispersive
element, and then focused by a second lens or mirror before arriving at the
image plane. A slit in the telescope focal plane allows closely spaced
neighbouring wavelengths in the image plane to be distinguished.

e The throughput of a spectrograph is diminished by reflection from, and
absorption by, each optical element within the instrument.

e Echelle spectrographs use a second disperser at right angles to the first, to
obtain a high spatial resolution over a large range of wavelength. Integral field
unit spectrographs and multi-object fibre-fed spectrographs use optical fibres to
collect light from many different parts of a telescope’s field-of-view and enable
spectra of many parts of a single extended object, or many individual objects,
to be obtained simultaneously. Multi-slit spectrographs also allow the spectra of
many objects to be obtained simultancously.

QUESTION 3.1

The light from a star is incident normally on a reflective diffraction grating with 120
grooves per mm. In which orders of the spectrum does the red end of the spectrum
in one order (at 700 nm) first overlap with the blue end of the spectrum in the next
order (at 400 nm)?

QUESTION 3.2

(a) A spectrograph contains one lens, a mitror and a reflection grating. In the visible
waveband (from about 400 nm to about 700 nm), each air—glass interface transmits
85% of the light incident on it, and 4% of the incident light is also absorbed by each
reflection. What is the fraction of incident visible light from a star that emerges from
the spectrograph?

(b) For the spectrograph in (a), 40% of the emergent light occurs in the first-order
spectrum, spanning the range 400 nm to 700 nm. What is the intensity of light per
nm of wavelength range as a fraction of the incident light from the star in this
wavelength range?




4 ASTRONOMICAL DETECTORS

Human eyes respond only to the rate at which light from the source is reaching the
retina. Once this rate falls to the threshold of sensitivity, the visibility of such a weak
source cannot be improved by gazing at it for a long time. In fact, because of stress
and tiredness, the very opposite tends to happen. Hence, although a telescope with a
great light-gathering power undoubtedly helps to discover new weak sources, the
sensitivity threshold of the eye is still a limiting factor.

If we replace the eye by an integrating detector, then by using long time exposures
it is possible to detect sources that are several orders of magnitude weaker than can
be detected with the eye. An integrating detector is so called because it can integrate
(i.e. add up) the light it receives over a long period of time. The only limitation here
is the background brightness of the sky itself. If the exposure is long, the detector
will eventually record the intensity of the scattered light in the atmosphere, and the
faintest astronomical sources will remain lost in this background. Ultimately, it is a
combination of expert judgement, trial and error, and often a measure of luck, which
leads to the most perfect images of the night sky.

In order to take images with long exposures, modern telescopes are equipped with
sophisticated automatic guiding devices. As noted in Chapter 2, they make it possible
to fix the field-of-view of the telescope on one particular object (or on a particular
section of the sky) and to keep this field-of-view constant with such smoothness
and precision that the images exhibit no loss of resolution, even though the Earth has
been rotating around its axis and moving along its orbit during the exposure.

The importance of taking images through a telescope lies not only in the fact that
images can record weaker sources than the eye can see; equally important is the fact
that such images provide a permanent and accurate record of the observation.

An integrating detector is also capable of recording finer details in the structure of
extended celestial objects, or of separating more closely spaced point-like objects,
than can be immediately seen by the eye through the eyepiece. One reason for this is
that the individual recording clements of a detector can be packed more closely than
the receptors on the retina of the eye. Another reason is that the detector is often
positioned in the focal plane of the primary mirror (or lens) and is therefore not
affected by the residual aberrations of the eyepiece. The detector can therefore, in
principle at least, make full use of the angular resolution of the telescope. Although,
in practice, such limits of resolution are impossible to achieve when observing stars
from the Earth’s surface because of atmospheric turbulence, there is still a gap
between the best angular resolution that can be achieved by the telescope and the
acuity of the eye. An imaging detector can record details on scales of 1” or better
that can subsequently be enlarged to make them visible by eye.

Black-and-white photographic emulsion was the first, and still is the simplest, type
of integrating detector used in connection with astronomical telescopes. However,
for several reasons, photographic emulsion is not an ideal detector of the relative
brightness of celestial bodies. Firstly, its response is non-linear. This means that the
intensity recorded on the developed photograph is not directly proportional to the
brightness of the light falling on it. (Although this is an inconvenience, the effect can
often be allowed for and calibrated accordingly.) Secondly, and more importantly,




Note that 4096 = 212 = 4 x 210,

photographic emulsions have a relatively low sensitivity to light when compared to
electronic detectors. For more accurate photometric (i.e. brightness comparison)
measurements of individual sources, it is preferable therefore to use some form of
photoelectric detector.

A photoelectric detector is essentially a device that responds to incoming photons of
light by producing an electrical signal. This electrical signal is then detected, amplified
and measured, and the resulting image is built up and processed using a computer.
Several forms of photoelectric detector have been used over the years, such as
photomultipliers and photodiodes, but nowadays, the commonest type of detector
used in astronomy is known as a CCD, which stands for charge-coupled device.

A CCD is a two-dimensional, highly sensitive solid-state detector which can be used
to generate, extremely rapidly, a pictorial representation of an area of the sky or a
spectrum. Similar detectors are now routinely used in digital cameras. Figure 4.1
shows an example of an astronomical CCD. As you can see from the figure,
physically CCDs are very small, typically only a couple of centimetres across. They
are usually made from a silicon based semiconductor, arranged as a two-dimensional
array of light-sensitive elements. The pictures generated from such detectors
therefore consist of an array of picture elements, known as pixels for short, with
one pixel in the image corresponding to each light-sensitive element in the CCD.
Conventionally therefore, the light-sensitive elements of the CCD itself are also
referred to as pixels.

Figure 4.1 Anexample of a CCD used in
astronomical imaging. (Courtesy of John Walsh/
Science Photo Library.)

The individual pixels on the CCD can each be considered as tiny detectors in their
own right. A modém CCD may contain up to 4096 x 4096 (referred to as 4k x 4k)
pixels in an array, with each pixel typically of order 10 to 20 pm across. When
light falls on a pixel, each photon generates one electron-hole pair in the
semiconductor; the electron is called a photoelectron, since it is produced by a
photon. Hence the number of pairs depends on the intensity of the radiation. Once
an exposure is completed, the accumulated charges are transferred out of the array
in a controlled manner, one row at a time. This is converted into a digital signal
which can be displayed on a monitor screen and stored on computer for later
processing and analysis.




CCDs have an extremely high efficiency at visible wavelengths, recording typically
70% of the photons that fall on them. This may be compared with the efficiency of
photographic emulsion which is typically only a few percent.

A CCD consisting of 1024 x 1024 light-sensitive elements arranged in a square
array is used to obtain an image of a star cluster under seeing conditions of 1”.
In order to obtain an image that is ‘well matched’ to the seeing, it is reasonable
to have the image of a point object stretching across about four pixels on the
CCD. Hence, each pixel on the CCD must correspond to an angular size of
0.25”, to avoid an image falling on the dead area between pixels.

(a) If the physical size of the detector is 20 mm X 20 mm, what is the scale of
the image formed on the CCD in arcseconds per mm?

(b) What is the field-of-view of the CCD in this case?

(c) What focal length telescope is required to match this performance?

(a) 1024 pixels occupy 20 mm on the CCD, hence each is only (20 mm/1024)
= 19.5 um across. Each pixel corresponds to 0.25 arcseconds on the

sky image, hence the image scale is (0.25 arcseconds/19.5 um) =

1.28 x 104 arcseconds m~! = 12.8 arcseconds mm™'.

(b) The whole CCD is 20 mm across, so the field-of-view is
(12.8 arcseconds mm~! X 20 mm) = 256 arcseconds along each side, or
4.3 arcminutes X 4.3 arcminutes.

(c) A field-of-view spanning 256 arcseconds corresponds to (256/3600) X
(m/180) radians = 1.24 x 1073 radians. This will extend over 20 mm when the
focal length of the telescope is f, = 20 mm/1.24 x 103 = 16 100 mm or about
16.1 m.

CCDs are now used for virtually all astronomical imaging and the images so obtained
can then be used for astrometry (measuring the positions of objects), astronomical
photometry (measuring the brightness of objects) and spectroscopy (measuring the
spectra of objects).

¢ CCDs have many advantages over the eye as a detector for use with an
astronomical telescope. They are integrating detectors and so can detect fainter
objects than the eye; they also enable a permanent record to be kept of the
observation, and they allow finer detail to be investigated than possible with the
eye alone.

e Unlike photographic images, those produced by CCDs have high efficiency,
photometric linearity and the ability for images to be processed and analysed by
computer techniques.




Figure4.2 The CCD spectral
image refetred to in Question 4.1.

QUESTION 4.1

Figure 4.2 shows a (schematic) CCD spectral image, obtained using a single-slit

grating spectrograph, containing the spectra of two stars. The CCD comprises 800
x 800 pixels arranged in a square array and has a linear size of 10.0 mm along each
side. The telescope used to obtain the image has an effective focal length of 4.00 m.

(2) What is the image scale in the plane of the telescope, in arcseconds per mm?
(b) What is the field-of-view at the detector in arcminutes?

(c) What is the angular scale of the image in arcsec per pixel?

(d) What is the angular separation of the two stars?

(e) If the spectral scale of the image is 0.4 nm per pixel, what is the difference in
wavelength of the two emission lines (labelled H,, and Hp) in each spectrum?
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5 REDUCING CCD DATA

A CCD is just a semiconductor chip. To make it into a useful astronomical device, it
must be connected up to electronics that power it, control it, and allow its data to be
read out. The charge that has accumulated in each detector pixel is initially read out as
a tiny electric current. This current is amplified and converted into a number
expressed in so-called analogue data units (ADU). The ADU value is therefore a
measure of the charge that was read out from the detector pixel in question, but is on
an arbitrary scale. In order to quantify the number of photoelectrons that the pixel
held, and therefore the number of photons that were incident on the pixel during the
exposure, an analogue-to-digital conversion (ADC) factor is applied to the number in
ADUs. The ADC factor is essentially the number of photoelectrons per ADU. The
result of this process is a digital image where the value in each image pixel is the
number of photons incident on the detector pixel during the exposure (subject to
some calibration which we discuss below). Bear in mind however, that the CCD itself
does not count photons — a distinction which is crucial in assessing uncertainties.

The numbers in a digital image are stored to a certain numerical precision. For
instance, each pixel value may be stored as a 16-bit binary number. In this case, the
maximum value that may be stored in any pixel of the image is 216 — 1 = 65 535, i.e.
there are 65 536 unique values possible, ranging from 0 to 65 535. If the light
intensity falling on any single detector pixel is such that it would generate a value
larger than this limit, the analogue-to-digital conversion will saturate. In such a
case, the value stored in an image pixel would no longer be representative of the
number of photons falling on the detector pixel at that location. Exposure times
need to be carefully selected so that the objects of interest do not saturate the CCD.
If necessary, a number of short exposures may be combined to overcome this.

What is the maximum value that can be stored in an image pixel produced by a
CCD whose analogue-to-digital converter operates with 15-bit precision?

The maximum value is 215 — 1 = 32 767.

A raw CCD image is shown in Figure 5.1. Reducing, or
processing, CCD data consists of taking the array of values
stored on the pixels of an image, and manipulating it
appropriately to produce an image in which the numerical value
in each pixel is directly proportional to the number of photons
falling on the detector at that location. In order to do this, a
series of corrections need to be applied to each raw image,

and we consider these below.

In any CCD, some of the detector pixels will be faulty and will
return values that are misrepresentative of the light falling on
them. Such pixels are referred to as kot or cold or bad.
Sometimes an entire column or row of the CCD may contain
bad pixels. Software to process CCD images will generally have
the facility to either ignore bad pixels, or to replace them with an Figure 5.1 A raw CCD image showing bad pixels, bad
interpolated value based on the values in adjacent non-bad pixels. columns and varying intensity from one region to another.




When ionizing radiation, either from local, naturally occurring sources of
radioactivity or from cosmic rays, hits the CCD it releases charge in a pixel that is
similar to that caused by light falling on the chip, though often many times greater.
These spurious signals are usually confined to a single detector pixel or a few
adjacent pixels, and any individual image may have several dozen or several hundred
cosmic ray events, with the number increasing with exposure time. However, as
cosmic ray events have abnormally high values in single pixels they are usually easy
to distinguish from genuine ‘point sources’ such as stars whose light will be spread
over a few pixels with a characteristic distribution, namely the point spread function
of the telescope as discussed in Chapter 2 Section 4. Automated software to remove
cosmic ray events from individual images operates in the same way as for bad pixels
by interpolating using adjacent pixel values. Note, however, that this is only a partial
correction, since the interpolated value is only an estimate of the real one.

Alternatively, since the locations of cosmic ray events are entirely random, they may
be removed by combining together several individual images of the same field,
obtained with the same exposure time. By taking the median value in each pixel
from such a stack of images, the anomalously high values in pixels affected by
cosmic rays may be rejected.

A stack of nine CCD images contains the following values in a particular single
image pixel: 4356, 4421, 4324, 4309, 4401, 4967, 4397, 4391, 4364. Which
image contains the cosmic ray? What is the median value in the pixel?

The sixth image (with a pixel value of 4967) contains the cosmic ray. The
median value is the fifth value when the pixel values are arranged in order. The
pixel values in order are 4309, 4324, 4356, 4364, 4391, 4397, 4401, 4421,
4967. So the median value is 4391.

Notice that the median value is not equal to the mean value: the mean value is much
higher due to the influence of the anomalous value in the image affected by the
cosmic ray.

When the signals from a CCD are digitized in the analogue-to-digital conversion
process, an offset or bias signal is intentionally introduced into the digital value to
prevent the signal from going negative at any point (which it may otherwise do, due
to random fluctuations or noise). The value of the bias may vary depending on the
position on the CCD and can vary with time over the seconds or minutes it takes to
read out the array. There are two techniques for correcting for this bias signal.

Overscan strips are narrow regions of the CCD image, usually running down either
side of the image, a few tens of pixels wide. They are virtual pixels created by
continuing to read out the CCD even after the last real pixel has been read out. That
is, they do not correspond to a piece of the detector, and hence contain no
photoelectrons of their own. They therefore indicate how the CCD electronics, and
the analogue-to-digital converter in particular, responds to a genuine zero signal, and
how that response varies with time. For each row in the CCD, the values of the
signal in the overscan strip corresponding to that row may be averaged and
subtracted from the value in each other pixel in that row. After this stage of
processing, the overscan strips may be discarded, thus reducing the sizes of images.




(Sometimes overscan strips are called bias strips, but this can lead to confusion with
the bias frames described below.)

Bias frames are entire images created by reading out the CCD following a zero
second exposure, which means there are no photoelectrons stored in its pixels. {A
CCD ‘image’ is often called a frame and the two terms should be seen as
interchangeable.) The bias frame enables the average noise across the chip to be
measured and accounted for. Bias frames are usually obtained by taking zero-length
exposures with the shutter closed at the beginning and end of each night’s
observing. A master bias, see Figure 5.2, is generated by creating the median of a
stack of many such frames, and this can then be subtracted from every other image
obtained during the night.

Figure 5.2 A master bias frame showing small-scale
structure in the noise across the CCD. There is an
overscan strip down the extreme right-hand side.

Another effect is that some signal may be generated in CCD pixels even when no
light is present. This is referred to as dark current and is due to the motion of
electrons that arises from the thermal energy of the CCD and defects. Like the bias
signal, it varies from pixel to pixel and also changes with time. Dark current can be
minimized by cooling the CCD to liquid-nitrogen temperatures. However, if this is
not possible, or not sufficiently effective, then dark current may be accounted for by
taking long exposures with the shutter closed, removing the bias, and then dividing
by the exposure time to obtain the dark current per second in each pixel. This may
then be scaled by the exposure time of every other image, and subtracted off. Dark
current is often insignificant for many visible-light CCDs, but is more important
when working in the infrared.




The sensitivity to light of the many pixels in any CCD will vary slightly with
position, by a few percent. This is due to irregularities introduced by the
manufacturing process. In order to calibrate for this relative variation in pixel-to-
pixel sensitivity, a CCD is exposed to a uniformly illuminated light source, such as
the twilight sky, or the inside of an illuminated observatory dome. The images
obtained by such a process are known as flat fields. Target images may then be
corrected, using flat fields, to the values they would have had if all the detector
pixels had the same sensitivity to light. This process is known as flat-fielding. It is
important to note that the pixel-to-pixel variation will also be a function of
wavelength, so when observing through filters, flat fields must be obtained through
the same filters as the target observations.

Flat-fielding also corrects for effects such as dust particles on the CCD itself; dust
on the filters which cast ring-shaped (out of focus) shadows; and the dimming of
objects observed towards the edge of the telescope field-of-view (this is known as
vignetting) caused by obstructions in the light path or just the change of angle.
Two types of flat fields commonly used are as follows.

Dome flats are images of the inside of the observatory dome, illuminated by a
continuum spectral source such as a tungsten-filament light bulb. The dome will
necessarily be out of focus, and the images will be featureless. Dome flats may be
taken during the day, before or after an observing session. They have two
disadvantages though. First, light reflected from the dome enters the telescope at a
different angle from that at which light from the sky enters. This can affect the
response to vignetting and dust on the filters or CCD. Second, the spectrum of a
tungsten-filament light bulb is not the same as that of the night sky and can make it
more difficult (or even impossible) to correct for an effect known as fringing.
Fringing is caused by interference between rays from multiple reflections, within
the CCD or filters, of light at a single wavelength. It can give rise to wave-like
patterns of intensity variation across the CCD, known as fringes. In order to
correct for fringes, we must use a flat-field source whose spectrum closely
matches that of the image in question.

Fringing can usually be accounted for by using sky flats. These are images of the
sky taken in twilight, either before or after an observing session. The sky needs to
be brighter than any stars that are in the field-of-view, but not bright enough to
saturate the CCD. Disadvantages of sky flats are that it can be difficult to judge the
appropriate exposure times and that sunlight reflected from the inside of the
observatory dome can also reach the CCD, affecting the vignetting response as
with dome flats.

The procedure to ‘flat-field-correct’ the images is that several flat fields are de-
biased and dark current subtracted, and then combined (median stacked) to
produce a single master flat (in each filter); see Figure 5.3. The value in each pixel
of the master flat is then divided by the mean value of all the pixels. This has the
effect of normalizing the mean value of the master flat to unity (i.e. a value of one).
De-biased, dark-subtracted target images in each filter are then divided by the
normalized master flat image in the appropriate filter to remove the pixel-to-pixel
sensitivity variation, dust images, and vignetting effects (Figure 5.4).



Figure 5.3 A master flat field showing spurious
images due to dust particles, vignetting effects
and pixel-to-pixel sensitivity variations.

Figare 5.4 A de-biased, flat-fielded image of
Figure 5.1. Comparison of Figures 5.1 and 5.4 as
‘before’ and ‘after’ illustrates why we say the
data have been reduced.




The stages in reducing CCD data are as follows:

e Bad pixels and cosmic rays are removed by interpolating across the affected
pixels or by taking the median of a stack of images.

e A master bias frame is created and subtracted from each image, or overscan
strips are used to correct for the bias level in each image.

e The dark current is removed if necessary, scaled to the exposure time of each
image.

e Dome flats or sky flats in each filter are combined and normalized to a mean of
unity, then divided into each target image to correct for pixel-to-pixel
sensitivity, dust particle shadows and vignetting.

QUESTION 5.1

Figure 5.5 shows cross-sections through the images of two stars on a CCD frame.
One of the two stars is saturated. Which one is it and why? How could you avoid
this problem?
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Figure 5.5 Cross-sections through the images of
two stars on a CCD frame. One of the stars is
saturated, the other is not. See Question 5.1.

QUESTION 5.2

If a series of exposures are made of targets through different filters, why must flat
fields also be obtained through each filter too? Conversely why is a single set of bias
frames and dark frames sufficient?



6 PHOTOMETRY

Photometry is the technique of measuring the brightness of astronomical objects.
But what does it mean to talk about the ‘brightness’ of an astronomical object?
Astronomers often use the term ‘brightness’ rather loosely. It can refer to the
amount of light, or other radiation, emitfed by a star or galaxy; it can refer to the
amount of light reflected by a planet or asteroid; or it can refer to the amount of
light, or other radiation, received from an astronomical object here on Earth. When
we wish to be more specific, we shall use the term luminosity to refer to the
intrinsic brightness of an astronomical object, that is the amount of energy radiated
by it per second. We shall also use the term flux when referring to the apparent
brightness of an astronomical object, that is the number of photons from the object
received per second here on Earth.

Astronomical photometry is generally carried out using observations made through
one or more filters, but may also be performed without a filter in so called ‘white
light’. After acquiring images at a telescope and reducing the CCD frames as
described in Chapter 5, the stages involved are usually as follows. The apparent
brightness of an object on a frame is determined by defining a circular zone called
an aperture around the object of interest and measuring the amount of light that
has been recorded in that aperture. The amount of light is normally expressed as

an astronomical magnitude. The measurement may be recorded as the object’s
magnitude relative to another star in the field or its magnitude relative to an arbitrary
sky value. This apparent brightness value may then be converted into a catalogue
magnitude in one of two ways. First, if the apparent magnitude of a comparison star
in the same field is known, the relative magnitude of the target star can simply be
scaled relative to that. Alternatively, similar procedures can be catried out for a
number of other stars of known magnitude, called standard stars, measured at
various positions around the sky. Based on the measurements of standard stars, a
calibration is made to take account of the atmospheric extinction and to determine
the offset between the instrumental magnitudes and catalogue magnitudes in the
absence of extinction (the so-called zero point). By applying these corrections to the
measured magnitudes of the target stars, their catalogue magnitudes may be
calculated. These stages are described in detail below.

The flux of light received from a star is commonly expressed on a logarithmic scale,
which is defined such that a difference of 5 magnitudes represents a ratio of 100 in
flux or apparent brightness. So the apparent magnitudes m; and m, of two stars
with fluxes F and F, are related by

my —my = 2.5 loglo(leFl) (613)
or my —my = -2.5 logIO(Fl/FZ) (61b)

Clearly if F; = 100F,, then m; — m; = —2.5logo(100) = 2.5 X 2 = =5. The negative
sign indicates that brighter stars have smaller (less positive) magnitudes. The zero
chosen means that the brightest stars have an apparent visual magnitude, my, around
—1 while the faintest stars visible to the naked eye have my about +6. Apparent
magnitude for any other wavelength range can be similarly defined.




The bright star Rigel has an apparent visual magnitude my = 0.12, while the
faint star Ross 154 has an apparent visual magnitude my = 10.45. What is the
ratio of the visual flux of Rigel to that of Ross 1547

Dividing each side of Equation 6.1b by —2.5 and then calculating 10 to the
power of each side,

10(m1 —mz)/—2.5 — _F'_l

F,
S0, FI/FZ = 10(0.12-1045) /2.5 = 104132 = 1 355 x 104
Therefore Rigel is visually about 13 600 times brighter than Ross 154.

The apparent magnitude of a star is not an intrinsic property of the star itself — it also
depends on the distance to the star and the amount of intervening (interstellar)
material that absorbs and scatters the light. By contrast, the absolute magnitude of
a star (which is related to the luminosity) is an intrinsic property of the star itself.

The absolute magnitude (represented by M) is defined as the value of the apparent
magnitude that would be obtained at the standard distance of 10 pc from a star, in
the absence of any intervening matter. To see how this is related to the apparent
magnitude, consider the following.

As the light from a star streams out into space, it will become spread out over the
surface of an imaginary sphere of ever increasing radius, d. Since the surface area of
this sphere is given by 47d?, the flux observed from a star will be inversely
proportional to the square of the distance away from the star. Hence, for a star at a
distance d away, the flux is given by F(d) o 1/d?. We may therefore write the ratio
of the flux at a distance d to the flux at a distance of 10 pc as

F(10) \d/pc
So, using Equation 6.1, the relationship between apparent and absolute magnitudes is
therefore

2
F(d) 10
-M =-25lo — |=-2.51I _—
m glO(F(lo)] Oglo(d/pc]

or M —m=5log,| —2|=5log,,(10) - 5log,o (d /pc)
d/pc

Consequently,
M=m+ 5 — 5 logo(d/pc) (6.2a)

where d is the distance to the star. If intervening material is present which scatters
and absorbs light from the star, this equation may be modified to take account of the
reduction in flux caused by interstellar extinction as follows:

M=m+5 -5 log(d/pc) — A (6.2b)

where A is the amount of interstellar extinction expressed as an equivalent number
of magnitudes. (Note that interstellar extinction includes the effects of both
absorption of light and scattering of light by intervening gas and dust. Both of
these effects will reduce the amount of light reaching the observer.) The distance
modulus of a star (or other astronomical object) is defined as the difference
between its apparent and absolute magnitudes, hence from Equation 6.2b,

distance modulus = m — M = 5 logo(d/pc) -5+ A (6.3)




The bright star Rigel has an apparent visual magnitude m = 0.12 and is at a
distance of d = 280 pc. Assuming there is negligible interstellar extinction in our
line of sight to Rigel, what is its absolute visual magnitude? What is its distance
modulus?

Using Equation 6.2b,

M=012+5 -5 log,,(280 pc/pc) — 0 = —7.12
m—M=0.12 - (-7.12) = 7.24

Absolute magnitudes are related to the luminosities (L) of stars in a similar way to
that shown in Equation 6.1 for apparent magnitudes and fluxes, namely

M1 - M2 = 2.510g10(L2/L1) (643.)
or My — My = —2.5logo(Li/Ly) (6.4b)

Apparent and absolute magnitudes can be quoted in any one of several broad-band
regions of the spectrum. Commonly these are expressed as U, B, V, R, and I,
standing for (respectively) near ultraviolet, blue, visible (i.e. green—yellow), red, and
near infrared, and are referred to as the Johnson photometric system. In addition,
three further bands in the near infrared are referred to as J, H and K. The
wavelength ranges corresponding to these regions are shown in Table 6.1.
Subscripts on m or M indicate the waveband in question, alternatively, the apparent
magnitudes are themselves represented by the symbols U, B, V, R, I, J, H and K.

Table 6.1 Some standard (broad-band) photometric wavebands.

Johnson system Sloan filters
Filter Central wavelength Width of band Filter Central wavelength Width of band
U 365 nm 70 nm o 353 nm 63 nm
B 440 nm 100 nm g 486 nm 153 nm
v 550 nm 90 nm r 626 nm 134 nm
R 700 nm 220 nm g 767 nm 133 nm
I 900 nm 240 nm Z 835 nmonwards —
J 125 um 024 um
H 1.65 pm 04 pum
K 22um 0.6 um

Other filter systems are also becoming more widespread. One such system is the
filter set used for the Sloan Digital Sky Survey. The filters here are named v’, g’, 1/,
i’ and z’ and their characteristics are also shown in Table 6.1. These filters are
designed so that specific spectral line features fall within the pass band of certain
filters. This can help to broadly characterize astronomical objects from photometric
data alone without the need for spectroscopy.

Yet another filter set is the narrow-band Strémgren filter system. The filters here are
labelled u (ultraviolet), v (violet), b (blue), and y (yellow) and are centred at 350 nm,
410 nm, 470 nm and 550 nm. Unlike the Johnson and Sloan filters, the Strémgren
filters each have a bandwidth of only 20 to 30 nm. They too are useful for selecting
particular spectral regions that correspond to specific spectral features.



Figure 6.1 The inner circle
iltustrates the aperture over which
the star’s brightness is measured.
The outer two circles denote an
annulus of sky used to determine
the background brightness level.

6.2 Aperture photometry

Having acquired CCD images through a variety of filters, and reduced the CCD
frames using the techniques described in Chapter 5, the next stage is to perform
aperture photometry on the objects of interest. Image analysis software tools allow
a circular zone called an aperture to be defined around the star or other object of
interest (Figure 6.1), and another aperture is used to define the background or sky
brightness. This second aperture may be on another part of the same image, or often
a concentric annulus is used, as shown here. By adding up the amount of light
recorded in each aperture, the software calculates the flux due to the object in
question and subtracts from this the flux due to the background. Note that, if the
object aperture and the background aperture have different sizes, it will be necessary
to scale the background measurement to the equivalent value that would be measured
in an aperture of the same area as that used for the target. However, this is usually
done automatically by software. In addition to the above, it is sometimes appropriate
to select a reference star on the same image (using a further pair of source and
background apertures), to which the flux from the target star will be compared.

The flux from the background subtracted target is then displayed as either the
magnitude relative to the reference star on the same image, or as the magnitude
relative to the sky. This latter value is referred to as an instrumental magnitude —
it is a relative value, often set such that the sky has an arbitrary magnitude of 50 (or
some other suitably faint magnitude value).

You may be wondering, how does one choose the correct size of apertures for the
object and the sky? This can indeed be a tricky problem. Figure 6.2 shows a cross-
section through the brightness profile of the target star in Figure 6.1. Should one
make the aperture radius 15 pixels or more to include all the light from the star?

If this is done there is a danger of including excessive noise from the sky
background that will dominate the outer parts of the aperture. Should one instead set
the aperture radius as 5 pixels or less to include only the brightest parts of the star’s
image and ignore the faint extensions to its brightness profile? If this is done there is
a danger of underestimating the star’s apparent magnitude. Clearly there is a
compromise to be achieved between including all the light from the star, and
including excessive amounts of noisy sky background. Some software packages
make use of optimal photometry routines in order to adjust the apertures to the
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optimum size and maximize the signal-to-noise ratio of the
measurement by weighting the values of individual pixels according
to their different contributions from the sky and the target. Where
this is not possible, it is often appropriate to use an aperture such
that all of the light from the object is included down to ~1% of the
value at the peak of the profile. This will slightly underestimate the 210000 /
apparent magnitude of each star, but provided all stars are measured I
with the same sized aperture, and all stars have similar profiles L /

irrespective of where they are in the image, the same fraction of the 0 ; 20 ' 40 .
light will be missed within each aperture. The magnitude difference distance along slice in pixels
between any two stars will therefore be correct.
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Figure 6.2 A cross-section through the brightness
profile of the target star in Figure 6.1.

The simplest type of photometry is known as differential photometry. When
investigating the brightness variations of a variable star, for instance, you can simply
monitor the difference in magnitude between the target of interest and another star in

the same field whose magnitude is known (or assumed!) to be constant. If all you '
are interested in is the amplitude and timescale of variation of the target star, then it

is not even necessary to know the catalogue magnitude of the comparison star. Any ;
variations in the atmospheric extinction that affect the observed magnitude will 1
affect both the target and comparison star in the same way. So even though the star

may rise and set through the night, differential photometry relative to a star of

constant magnitude in the same field will reveal the variations in the magnitude of the

target star. l

If catalogue magnitudes of a target object are required, this may be achieved as long |
as a star of known apparent magnitude is also present in the same image. Relative \
photometry is carried out by measuring the magnitude of the target star (or stars) !
relative to a comparison star in a similar way to the differential photometry described ’
above. The extra step is to add on the known magnitude of the comparison star to

the magnitude difference between the target(s) and comparison stars. As long as the

apparent magnitude of the comparison star has been well determined previously, the

magnitudes of all the stars in the same field can be determined too.

What do you do though if there are not any comparison stars of known magnitude
in the field containing your target of interest? In this case, in order to convert the i
measured instrumental magnitudes into catalogue magnitudes, a magnitude

calibration must be performed. The procedure is to take images of several standard

stars through the same filters as are used for the target stars. Standard stars are

objects whose apparent magnitudes have already been measured in the same

wavelength range and calibrated against the (small) set of primary standard stars

which define the magnitude system.

The Bright Star Catalogue (BSC) is a catalogue of around 9000 stars spread over the
whole sky, with magnitudes brighter than my ~ 6.5. It therefore comprises all the )
stars visible to the naked eye. Some of the stars in this catalogue can be useful as



approximately standard stars. Note though that some of the BSC stars are variable
objects, and are flagged as such in the catalogue. Clearly, variable stars should not be
used as calibrators because their apparent magnitude is not fixed at a constant value.
Be careful to choose only stars of constant magnitude as standard stars!

A more reliable source of standard stars, chosen for photometric constancy, is the
collection of over 500 equatorial stars in the magnitude range 11.5 <my < 16.0
published by Landolt (1992). The Landolt stars have the advantage that they are
grouped together into regions of the sky, such that there will be several standard
stars observable in one typical CCD frame, though the stars are all much fainter than
those in the BSC.

A third source of standard star magnitudes (and by far the largest) is the Tycho
catalogue. This was produced by ESA’s Hipparcos satellite which operated from
November 1989 to March 1993. The catalogue contains two-colour (B and V)
photometry of over a million stars and is a complete record of the entire sky down to
my ~ 10.5. For stars brighter than my ~ 9, the magnitudes are accurate to about 0.01
and are obtained from over 100 measurements per object. This large resource is
accessible on the internet, for instance at the Centre de Données astronomiques de
Strasbourg http://cdsweb.u-strasbg.fr/

In the simplest terms, there are two factors to allow for when calibrating
magnitudes. The first is the atmospheric extinction, due to absorption and
scattering of light by the Earth’s atmosphere, which will vary depending on the
zenith angle at which an object is observed, on the wavelength of observation, from
night to night and from location to location. Objects at the zenith will have minimum
atmospheric extinction, while those close to the horizon will have maximum
atmospheric extinction. The second calibration is to determine the offset between the
measured instrumental magnitude and the catalogue magnitude in the case of zero
atmospheric extinction. Both these corrections may be carried out simultaneously if a
suitable set of standard star observations are made. The key is to

observe standard stars at a range of zenith angles throughout the
T e | night, using the same set-up as used for your targets.

For each standard star observed through a particular filter, you
should measure its instrumental magnitude and record its airmass.
The airmass is the ratio of the thickness of the atmosphere at the
observing altitude to the thickness at the zenith. It is therefore a

top of atmosphere dimensionless number. If we make the assumption that the Earth’s

W atmosphere consists of plane-parallel layers then, as shown in

Fé | = Figure 6.3, the ratio of the thickness of the atmosphere at the

X /Q‘é? zenith to the thickness of the atmosphere at a particular observing
*3 l (f altitude, is simply given by cos(zen). Hence the airmass may be
é zen ‘.§§ approximated as:

- = J/ i _ ol airmass = 1/cos(zen) (6.5)

j} Earth’s surface We then assume that the following equation applies:
| I ' —m) =X + ¢ (6.6)
Figure 6.3 Assuming a plane-parallel atmosphere, where m is the catalogue magnitude of the star (also known as the

the ratio of the thickness of the atmosphere at the
zenith to the thickness of the atmosphere at a
particular observing altitude, is simply given by
cos(zen).

true apparent magnitude), m’ is the instrumental magnitude of the
star, € (the Greek letter epsilon) is the extinction coefficient in -
magnitudes per airmass, X is the airmass and { (the Greek letter

zeta) is the zero-point offset between instrumental and catalogue



magnitudes. Hence if we plot a graph of (m’ — m) versus X, the standard star See Chapter 15 on graph plotting
measurements through a particular filter should all lie along a straight line of gradient if you are unfamiliar with the

¢ and intercept ¢. In order to determine these constants, you may choose to follow ~ €duation of a straight line graph.
just one standard star over the night, and measure its brightness at a range of zenith

angles as it rises and then sets. However, it is usually best to use a small set of

standard stars so that some can be measured at large zenith angles and others at

small zenith angles at any given time. Note also that the extinction coefficient will

usually vary from night to night, so must be re-determined for each night’s Note that in practice, the terms
observations. If you are unlucky, it may also vary significantly throughout a single zero point and zero-point offset
night’s observing. are interchangeable.

What is the airmass of a star at the zenith? What is the airmass of a star at an
elevation of 30° above the horizon?

A star at the zenith has a zenith angle of 0°, so its airmass is 1/cos(0°) = 1.0.
A star at an elevation of 30° above the horizon has a zenith angle of (90° — 30°)
= 60°, so its airmass is 1/cos(60°) = 2.0.

Having determined both the extinction coefficient and zero-point offset for each filter,
the catalogue magnitudes of the target objects are determined by applying Equation
6.6 once again. With measured values of instrumental magnitude and airmass, and
calculated values for € and &, the catalogue magnitudes of the target objects may be
calculated in each filter.

Note that if you are observing targets that are always close to the zenith (say, zenith
angle <10°), then the extinction coefficient will be of negligible importance in your
calibration. Only the zero-point offset will be relevant. In this case you can get away
with only measuring standard stars close to the zenith too and then assuming that the
difference between catalogue magnitude and instrumental magnitude is roughly
constant for both your standard stars and your targets.

The calibration procedure described above uses two parameters, the extinction
coefficient £ and the zero-point offset §, to convert the instrumental magnitudes to
standard magnitudes. For greater precision, two more parameters may be needed: the
transformation coefficient and the secondary extinction coefficient. Although it
is unlikely you will need to use them to analyse observations made for training
purposes, you would need them for accurate research, and for that reason we briefly
introduce them here. The transformation coefficient adjusts for differences between
the equipment you use and the equipment used by whoever made the standard
measurements, e.g. Landolt. Differences in the way the transmissions of filters and
the sensitivities of detectors vary with wavelength are adjusted for by the
transformation coefficient. Secondly the extinction coefficient € treats all of the
wavelengths transmitted by a given filter as being extinguished equally, but this is an
over-simplification since stars observed at high airmass not only appear fainter but
also redder — as you may have noticed if you have ever watched the sunset. The
secondary extinction coefficient allows for this second fact.

e The fluxes of light from stars may be characterized by their apparent magnitude
through one or more filters. The magnitude scale is logarithmic, and the brighter
the star, the smaller the numerical value of the magnitude.




Table 6.2 For Question 6.3.

zenith angle
60°
40°
20°
40°
55°
65°

airmass

2.00
1.31
1.06
1.31
1.74
237

e Aperture photometry is carried out on reduced CCD images by measuring the
flux within a circular aperture around the object of interest and subtracting the
sky flux. The magnitude may be determined relative to that of a comparison star
in the same image, or relative to that of the sky.

o Differential photometry involves simply measuring the difference between the
flux of the (variable) target star and a (constant) comparison star on the same
image. Relative photometry of one or more stars in an image may be achieved
by measuring their flux relative to a star of known magnitude contained in the
same image.

o Measurements of standard stars at a range of zenith angles allow the extinction
coefficient and zero-point offset to be determined for each filter. Instrumental
magnitudes of target stars may be converted into catalogue magnitudes by
applying a calibration determined using standard star observations.

QUESTION 6.1

The apparent visual magnitudes of Rigel and Ross 154 are (.12 and 10.45
respectively, while their distances are 280 pc and 2.9 pc respectively. What is the
ratio of the V-band luminosities of Rigel and Ross 154? (Assume that there is
negligible interstellar extinction along the line of sight to each of these stars.)

QUESTION 6.2

An aperture of radius 12.0 pixels is placed around a star on a CCD image and
encloses a total count of 2.50 x 106 photons. An annulus of inner radius 18.0 pixels
and outer radius 24.0 pixels surrounds the star and includes a total background count
of 7.00 x 105 photons. Assigning an arbitrary instrumental magnitude of m, = 50.0 to
the background sky flux in 1 pixel, what is the instrumental magnitude of the star?

[NB Remember to correct the sky flux to the same aperture area as the target star
before doing the background subtraction.]

QUESTION 6.3

The star Regulus (my = 1.35, mp = 1.24) is used as a standard star and observed
throughout the night through a V-band filter and a B-band filter. Its instrumental
magnitudes measured by aperture photometry at a range of airmasses are as given in
Table 6.2. (Remember that the instrumental magnitude is on an arbitrary scale.)

(a) What are the zero point and extinction coefficient in each of the V-band and B-
band?

(b) A target star was measured to have an instrumental V-band magnitude of 29.75
and an instrumental B-band magnitude of 31.25, at a zenith angle of 35°. What are
the catalogue magnitudes of the target star?

V-band instrumental magnitude B-band instrumental magnitude
2432 23.09
24.19 2291
24.17 2282
24.23 2285
24.28 23.01
2438 2320




7 SPECTROSCOPY

As explained in Chapter 3, the spectral images produced by a single-slit grating
spectrograph generally consist of a band of varying intensity stretching across the
image in the spectral direction, often with different spectra separated vertically on
the image in the spatial direction.

If the spectral direction of the image produced by a single-slit spectrograph
runs horizontally on a CCD, in which direction must the slit have been aligned?

The slit must have been aligned perpendicular to this direction, parallel to the
spatial direction of the image on the CCD, i.e. vertically.

Note that in the following we shall always assume that the spatial direction runs
vertically on the CCD frame and that the spectral direction runs horizontally, with the
shortest wavelength on the left. If individual frames acquired on a particular
telescope do not match this arrangement, it is possible to flip them left-to-right and/
or rotate them through 90° using a software image analysis package. We now
consider how to extract spectra from such spectral images.

We described earlier how to flat-field correct CCD frames that are simple images.
There is one difference when dealing with CCD frames containing spectra, and that
is that one dimension of the CCD image now corresponds to a spectral direction
rather than a spatial direction. A conventional flat-field correction of the type
described earlier is therefore not appropriate for spectral images. This is because the
variation in the sensitivity of the CCD along the spectral direction is wavelength
dependent, and the spectrum of the light-source illuminating the flat field is not the
same as the spectrum of the target objects. It is essential that the flat-field
illumination for spectroscopy should contain no emission lines, so, for example,
fluorescent lights cannot be used.

The approach in this case is therefore as follows. The values in the pixels in each
column of the master flat field image are added together to obtain a single ‘row’ of
data. The values in this row of pixels are divided by the number of pixels originally
present in each column to give the average signal in each column. A smooth curve is
fitted to these data to model the spectral response of the spectrograph to the light-
source used in the flat field. The value of the master flat field is then divided at each
point by the value of the smooth curve to produce a new flat field that now only
contains the spatial variation in the CCD’s sensitivity (i.e. in the vertical direction),

provided the flat-field illumination was uniform along the slit. The spectral image
values are then divided by this modified flat field as before in order to correct for

pixel-to-pixel sensitivity in the vertical (spatial) direction only.

In simplest terms, the extraction of a spectrum from a spectral image involves
identifying the range of rows of the CCD that encompass the spectrum, and then
summing the pixels along each short column of the CCD over these rows to produce




Figure 7.1 (a)Aregion of the
spectral image is selected
encompassing the spectrum of an
object of interest. As noted in
Figure 3.8, this spectral image
contains the spectra of two bright
stars and three faint ones. The
spectrum of one of the bright
stars (star B) is selected in this
case. (b) The rows of data
corresponding to the selected
object are averaged to produce
the spectrum shown here.

(c) Rows of data corresponding to
the background sky are averaged
to produce the spectrum shown
here. (d) The result of subtracting
the sky spectrum from the target
spectrum.
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a single row (see Figure 7.1a and b). One or more regions of background or sky
spectrum are selected from the image in a similar way and subtracted from the
target spectrum (see Figure 7.1c and d), allowing for the possibility that a different
number of rows may be used in the extraction of the target and background spectra.

In the example shown here, the resulting sky-subtracted spectrum of the target
object shows two broad absorption lines superimposed on a smoothly varying
continuum.- Notice that the emission line present in the sky spectrum around pixel
940 appears in the ‘raw’ target spectrum superimposed on the absorption line, but




has been removed by the simple sky subtraction procedure. The variation in the
continuum of the resulting sky subtracted spectrum is determined by the underlying
spectral distribution of the object and by the spectral response of the CCD.
Furthermore, the spectral axis of this graph is still in terms of pixel number. The
next stages in calibrating such a spectrum involve assigning wavelength values to the
horizontal axis and accounting for the spectral response of the detector.

In order to assign wavelength values to the horizontal axis of a spectrum such as
that shown in Figure 7.1d, the spectrograph is usually exposed to a standard
emission line source. Usually this is a hollow cathode lamp, commonly, but
incorrectly, referred to by astronomers as an arc lamp. This is a discharge tube
filled with a vapour whose spectral lines are at well determined wavelengths (see
Figure 7.2a). The lamp spectra are extracted in a similar way to target spectra,
except there is no need of a sky subtraction, as the exposure is all internal to the
telescope and the light from the lamp fills the slit. The pattern of emission lines, such
as that in Figure 7.2b is compared with a standard list of lines that are known to be
produced by the vapour in question. In this way the wavelengths corresponding to a
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Figure 7.3 The sky subtracted
spectrum with the axis now
calibrated in wavelength.

Figure 7.4 The continuum
normalized spectrum created by
fitting a smooth curve to the
continuum trend in Figure 7.3,
and then dividing the spectrum
by this trend.

variety of pixel locations may be established. A simple mathematical shape, such as a
cubic function, is fitted to establish the wavelength corresponding to any pixel
position, and this is applied to the lamp spectrum (Figure 7.2c). The wavelength axis
is then simply copied to the target spectrum (Figure 7.3).
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As mentioned earlier, a spectrum such as that represented by Figure 7.3 still contains
the effect of the wavelength response of the CCD. Therefore the variation in
strength of the continuum seen there does not necessarily reflect the true variation in
the continuum spectrum of the source. In many cases we are only interested in
determining the presence or absence of certain spectral lines, or of measuring the
accurate wavelengths of certain lines to determine Doppler shifts due to radial
velocity motions, for instance. In this case a full flux calibration is not important,
and the simplest thing is simply to remove the wavelength response by normalizing
the continuum to a mean level of unity. To do this, a smooth curve is fitted to the
continuum and then the spectrum is divided by this smooth curve to create a
continuum normalized spectrum (see Figure 7.4).
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In cases where a full flux calibration of the spectrum is required, it is necessary
to obtain spectra of spectral standard stars whose flux is known at a number

of wavelengths in the range that is being observed. There exist catalogues of
spectral standard stars that have been measured in just this way, such as those by




Oke & Gunn (1983) and by Filippenko & Greenstein (1984). The technique is then
to compare your observed spectra of spectral standards with the published flux
calibrated spectra, and determine the instrumental response as a function of
wavelength (position on the CCD). The final step is then to divide target spectra by
this instrumental response to end up with a flux calibrated spectrum of your target.
The details of this procedure have only been outlined here, as it is unlikely that as a
student you will carry out a full-flux calibration of this kind on your data.

Spectral information is usually presented in the form of a graph. The horizontal
axis of the graph usually shows wavelength or frequency. (In spectral regions
other than the optical, the horizontal axis may show some other equivalent quantity,
such as photon energy for y-ray and X-ray spectra, or the number of wavelengths
that fits into 1 cm of length, a quantity called the wavenumber which is
commonly used by infrared astronomers.) The vertical axis of the graph normally
indicates the brightness of the spectrum at any given wavelength, and again a
variety of equivalent quantities can be used. In its simplest form the vertical axis
may record the number of photons that were measured from a source during a
particular exposure. However, as convenient as this may seem, it tells the reader
nothing directly about the intrinsic or even apparent brightness of the source. The
vertical axes of some graphical spectra are labelled spectral flux density. At any
given wavelength, A, the spectral flux density, F;(4), expresses the amount of
energy per second that passes through a unit area (1 m? in ST units) per unit
interval of wavelength 3\, where 84 is a narrow wavelength interval centred on A.
The A in the subscript reminds you that F' is defined per unit wavelength interval,
and the A in brackets reminds you that F varies with wavelength. In SI units, this
might have the unit W m~2 nm~!. A similar, but distinctly different, physical
.quantity that may also be plotted, and which is regrettably also called the spectral
flux density, is the quantity given the symbol F (V).

By analogy with the definition of F;(1), can you guess what the definition of
F(v) might be?

F (v) expresses the amount of energy per second that passes through a unit
area (1 m? in SI units) per unit interval of frequency dv, where dv is a narrow
frequency interval centred on v. The v in the subscript reminds you that F is
defined per unit frequency interval, and the v in brackets reminds you that
varies with frequency. In SI units, this will have the unit W m—2 Hz"1.

Graphical spectra may also use vertical axes that show relative spectral flux
density where the spectral flux density at any wavelength is expressed as a
fraction of some reference value and there will be no SI units shown on the axis.
A special case of value for stars is where the reference spectrum is the continuum
level of the same spectrum, which is what the spectrum would look like in the
absence of any discrete spectral lines or bands. As noted earlier, a spectrum which
has been divided by its own continuum is said to have been continuum normalized,
so much of the spectrum will have a value of 1.0 on the vertical axis, with
absorption and emission lines falling below or rising above that level.




e Spectral images have to be flat-field corrected in a different way from regular
images because the variation in the horizontal (spectral) direction is due to the
varying spectral response of the spectrograph and the spectral distribution of
the lamp used to make the flat-field image.

e Spectra are extracted by summing over a number of rows in the image and
then subtracting a similarly extracted sky spectrum.

e Wavelength calibration is carried out by matching the pattern of emission lines
seen in the spectrum of an arc lamp to the known wavelengths expected from
the vapour in question.

e Flux calibration in its simplest terms can involve normalizing the spectrum to a
smooth fit to the continuum in order to remove the effect of the varying
wavelength response of the spectrograph and the continuum spectral
distribution of the source. Alternatively, if a genuine flux calibration is required,
spectral flux standard stars must be observed.

e Spectra are conveniently displayed with a vertical axis corresponding to

spectral flux density Fy(A). This is the amount of energy per second that passes
through a unit area per unit interval of wavelength.

QUESTION 7.1

Explain the difference between the horizontal stripes apparent in the spectral image
illustrated in Figure 3.9 and the vertical stripes apparent in the spectral image
illustrated in Figure 7.2a.




8 MICROSCOPES AND MICROSCOPY
TECHNIQUES

Not all aspects of astronomy and planetary science are confined to
observing objects at vast distances. We are fortunate in having a
supply of solid samples available for study in the form of meteorites
and interplanetary dust particles as well as extraterrestrial samples
brought back from space missions. All of these samples are made of
rocky material and therefore many of the techniques employed in the
study of geology can be readily applied to planetary samples. The
rarity of such samples, as well as their random delivery and collection,
means that the study of their relationships on a large scale is not
possible. In contrast, on Earth one might study how the rock types
change across a mountain range. Instead, the laboratory study of
planetary materials is largely confined to the details within each sample
— rarely larger than a few tens of centimetres across and generally
much smaller, down to fractions of a millimetre in the case of dust
particles. While present day research into planetary materials is
conducted with a vast array of highly sophisticated analytical tools, the
initial characterization of each sample and selection of suitable portions
for further study is still performed by optical examination using a
petrographic microscope (or polarizing microscope) (Figure 8.1).

Microscopes have been around since the seventeenth century, but the
development of what we now know as the petrographic microscope Figure 8.1 A simple petrographic microscope
was not made until the mid-nineteenth century by Henry C. Sorby in (or polarizing microscope).

Sheffield. Much criticized at the time, Sorby countered that

‘...no one expected astronomers to confine their observations to
what they could see with the naked eye, so why should geologists
be so restricted’

and perhaps more pertinently noted that even when studying such features as
mountains, or for that matter planetary bodies,

¢...there is no necessary connection between the size of an object
observed and the value of the facts and conclusions that can be
derived from it.’

The study of rocks with a microscope requires very careful preparation of the
sample, typically no more than 2 or 3 cm across, into a very thin wafer, usually
about 30 microns thick, mounted on a glass slide and polished to produce a high
quality finish. Even with today’s automated machines, this is a time consuming
process and it takes several days to prepare a section.

The key element of the petrographic microscope is the use of polarized white
light to view the sample. Although most minerals in rocks are largely transparent
when only 30 microns thick, it is the interaction of polarized light with the
minerals that offers enhanced contrast and therefore improved image quality
compared to normal microscopes. The use of polarized light also permits use of
a rather surprising optical property of minerals which is of great help in their
identification.




The interaction of light with the rock-forming minerals in thin section lies at the
heart of the unique properties of the petrographic microscope. It is outside the scope
of this book to explain these complex phenomena in detail but the fundamental
principles are outlined here.

Polaroid sheet

Figure 8.2 The production of
plane-polarized light by passing
unpolarized light through a
polarizing filter, in this case a
Polaroid sheet.

il unpolarized light

A single ray of light (or indeed any electromagnetic radiation) is composed of

two oscillating fields at 90° to each other and to the direction of propagation:
namely an electric field and a magnetic field. For simplicity we will concentrate
on the electric field. The plane containing the oscillating electric field is called the
plane of polarization of the ray. Usually, a beam of white light will contain many
such rays all randomly rotated with respect to each other. However, the polarizing
filter in a petrographic microscope only permits light of one plane of polarization
to be transmitted, and the light so produced is called plane-polarized light

(see Figure 8.2).

The strong internal electric field associated with the atoms which make up a
crystal interacts with the oscillating electric field of light passing through the
crystal. One of the major effects of this is to slow down the passage of light
through a crystal. (This is exactly the same phenomenon referred to in Chapter 3
in the discussion of the role of a glass prism in a spectrograph.)

double-refracted light As noted earlier, the phenomenon of light changing speed when
travelling from one medium to another is known as refraction.
ol Crysml / The effect is quantified by the refractive index of the material,
which is defined as the speed of light in a vacuum divided by the

speed of light in the crystal.

vibration dlrectlon

parallel to paper Crystals have very ordered arrangements of atoms. Some crystals
vibraronldirertion are isotropic in that their crystallographic structure appears the
/ out of paper same irrespective of which of any three mutually perpendicular
axes it is viewed from. However, most crystals are said to be
g%rl;ti?ggsglo two anisotropic, in that their apparent crystallographic arrangement is
/ orientation-dependent. In such minerals, the strength of the internal

electric field encountered by a ray of light is dependent on the
alignment or orientation of the crystal relative to the plane of
Figure8.3 Side view through mineral showing polarization of the incoming light. This results in a variation of the
how light is refracted into two rays as it passes refractive index with the orientation of the plane of polarization.
through the crystal. Most importantly, anisotropic minerals also have a rather

incident plane-polarized light




remarkable property in that when plane-polarized light enters such a crystal it
becomes split into two rays (for reasons beyond the scope of this book), in a
process of double refraction. Both rays are plane polarized, but polarized at 90° to
each other (see Figure 8.3), which means that the two rays will encounter different
atomic arrangements, and so different refractive indices, and therefore travel
through the crystal at different speeds. This behaviour of having two different
orientation-related refractive indices is called birefringence.

As the two rays pass through the crystal at different speeds they will emerge from
the crystal with a phase difference between them. This phase difference ¢ can be
related to the birefringence of the crystal as:

d

¢= Ale, —ey)

x360° (8.1)

where d is the thickness of the crystal, (e; — e;) is a measure of the birefringence of
the crystal, i.e. the difference in the two refractive indices, and A is the wavelength
of the light.

To obtain a measure of this phase difference it is necessary to combine the two
emergent rays. This is achieved by passing the two rays through a second

polarizer (the analyser) which is orientated at 90° to the first polarizer. However,

in almost all cases neither of the two emerging rays is parallel to the analyser
vibration direction and therefore only a component of each ray can be transmitted.
The components of each ray emerging from the analyser now lie in the same plane
of polarization. They can be combined by a lens. If the phase difference between the
two components is-180° they exactly cancel each other out and no

light is transmitted.

For a fixed sample thickness and given birefringence
value, what property of the light will atfect the phase
difference between the two emergent rays?

The wavelength of the light (See Equation 8.1).

Therefore, when using a white-light source, different parts
of the spectrum are cancelled out for any given birefringence
value and mineral thickness. The combined rays therefore
generate a specific colour, which depends on the mineral
under study (see Figure 8.4). With increasing birefringence
the interference colour changes from yellow through to pink
and the pattern is repeated as the resultant phase difference
continues to increase past 360°. Therefore, by simply
viewing the interference colour of a mineral in thin section
and comparing the image to a calibrated standard colour
chart of interference colours, it is possible to accurately and
quickly determine the birefringence of the mineral, which is
of great benefit in the identification process. Note, though that,
this does require some skill in selecting suitably orientated
minerals and determining to which cycle a particular

- Figure 8.4 Anexample of a mineral viewed through
interference colour belongs. polarizing filters in a petrographic microscope.




In its simplest form, a microscope consists of only two optical components, an
objective and an eyepiece, separated by the body tube (Figure 8.5). The objective
projects a magnified image of an illuminated object into the body tube and the eyepiece
further magnifies the image projected by the objective. Examples of such microscopes
have been around since the early 1600s and while the overall principle of such a two-
component, or compound microscope, is at the core of almost all modern
microscopes, each component is now vastly more complex and additional features are
introduced into the light path.

The main components in such a microscope are:

e Light source — typically this is a high-energy tungsten—halogen bulb (50 to
100 watts). The DC power supply for the bulb is normally controlled by a
potentiometer built into the microscope in order to control the level of
illumination of the sample.

o Polarizing filter — a sheet of polarizing film, often mounted in a rotating, but
lockable mounting, situated between the light source and the sample, to provide
light having an electric field oscillation that is confined to a single plane, i.e.
plane-polarized light. Conventionally this is orientated across the microscope.

e Substage light condenser — this usually consists of an adjustable aperture
diaphragm and a series of lenses that gathers light from the microscope light
source and concentrates it into a cone of light that illuminates the viewable area
of the specimen with uniform intensity.

e Sample stage — this is a 360° rotatable stage with a mechanism to hold the
sample securely in place. Focusing of the image of the sample is usually achieved
by moving the sample stage towards or away from the objective lens using two
geared handles to achieve coarse and fine control.

e Objective lens — this is perhaps the most important, and critically designed
component of a modern microscope. The simple convex lens employed in the
early microscopes has now been replaced with a compound lens containing up to
six or more components in order to project highly magnified images that are free
from chromatic and spherical aberrations. It is critically important that objective
lenses are stress-free and strain-free as stresses and strains can generate the
same sort of optical effects as those that are to be studied in the samples. This
involves selecting special strain-free glass or minerals from.which to fabricate
the components, as well as ensuring that, when multiple lens elements are
cemented together and mounted in tight fitting frames, no strain is imparted to
the optical components. Such strain can also occur as the result of damage
through dropping or even rough handling of the objective. The optical properties
of any objective are fixed and therefore a number of objectives are usually
mounted on a rotating turret offering a range in magnifications — typically from
x4 to x40. The objective is focused close to the specimen in order to project a
magnified real image up into the body tube of the microscope.

e Analyser - this is a second polarizing filter and can be inserted in the optical
path at almost any point above the sample, although it is most commonly found
immediately above the objective lens. This filter is fitted on a rotating mounting
but should always be positioned such that its plane of polarization is at right
angles to that of the lower polarizer and in such a way that it can be readily
inserted and removed from the optical path. When inserted in the optical path,
the sample is said to be viewed in eross-polars. If no sample is present in the
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optical path then, as the two polarizing filters are at 90° to each other, none of Figure 8.5 Schematic of
the plane-polarized light transmitted by the polarizer will be transmitted by the a petrographic microscope.
analyser and the image will appear entirely dark. In the absence of a sample,

anything other than a dark image indicates that the polarizer is not perpendicular

to the analyser.




Normally the viewing medium is air
where n=1, although viewing
media with higher refractive indices
(such as oils) can also be used with
special objectives.

e Eyepiece lens — this is the final optical component and it further magnifies the
real image projected by the objective. For visual observation the eyepiece
produces a virtual image which appears as if it were near the base of the
microscope. As with the objective lenses, the eyepieces are also composed of a
series of lenses and are often designed to work in conjunction with specific
objectives to compensate for any colour-dependent differences in the
magnification of the objective. Typical magnification factors for eyepieces are
x10 to x15. Modern research microscopes are generally fitted with binocular
heads which use a series of prisms to deliver the image to both eyepieces
simultaneously. Individual eyepieces can also be fitted with measuring scales
and crosshairs (usually referred to as graticules) for positioning and
measurement of the specimen.

The magnification of a microscope is simply the product of the magnification of the
objective and the eyepiece, e.g. a x40 objective with a X10 eyepiece gives a total
magnification of x400. While care must be taken to select eyepieces that are
compatible with the objectives in terms of appropriate corrections, there is also a
limit to which the eyepieces can enhance the magnification of the system. This is
determined by the performance of the objective — primarily a parameter called the
numerical aperture (NA) — which is a measure of a microscope objective’s ability
to gather light and resolve fine detail in the specimen. It is defined as:

NA =nsina (8.2)

where n is the refractive index of the viewing medium and o is one-half the angle
subtended by the objective aperture from the position of the sample. In practical
terms of manufacture, o is restricted to less than ~72° and therefore when viewing
in air the maximum value of NA is ~0.95. The useful magnification that can be
achieved with any lens is approximately 1000NA, so with a x40 objective there is no
point in using eyepieces with a magnification of more than x25, as to do so would
lead to no increase in detail.

If a sample is mounted in oil with a refractive index of 1.1, what is the
maximum useful magnification to use in an objective when coupled with an
eyepiece that provides a magnification of x15?

Since the maximum value of ¢ is ~72°, the maximum value of the numerical
aperture in this case is NA ~ 1.1 X sin 72° ~ 1.05. The maximum useful
magnification is therefore ~ 1000 X 1.05 ~ 1050. So with a X15 eyepiece, the
maximum useful magnification of an objective would be 1050/15 ~ x70.

Perhaps more important than magnification is the spatial resolution of an objective,
which is defined as the minimum distance between two points on a sample which
can still be resolved as distinct entities (although this is somewhat subjective
especially at high magnification where an image can appear not sharp but with
features resolved). The spatial resolution (R) of an objective in a microscope is
related to the numerical aperture by:

0.611
R=—"C
NA (8.3)
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where A is the wavelength of the light. (This is related to Equation 2.5 and the limit
of angular resolution of an astronomical telescope.) As white light is normally used
to view samples it is usual to work with a wavelength of around 550 nm (green) as
this is the light to which our eyes are most sensitive. Therefore, the maximum
resolution of any objective viewing the sample in air (i.e. NA < 0.95) is about

350 nm or 0.35 microns. Needless to say that to acquire such resolution requires the
microscope to be set up perfectly with all other components suitably matched to the
objective and therefore in reality the working resolution is always significantly
poorer than this.

Not all minerals are transparent in thin section. Some, particularly sulphides and non-
silicate oxides, are essentially opaque. Therefore, for some studies it is also
necessary to include the capability to view the sample with a reflected, or incident
light source. This is particularly true when working with most meteorites as they
tend to include significant quantities of iron—nickel metal and sulphides, in
proportions from a few percent to 100%. For reflected light viewing, a second light
source is required to illuminate the specimen directly along the viewing axis. After
passing through a polarizing filter the light from this second source is introduced
into the viewing path usually by means of a coated-glass plate reflector mounted in
the viewing path at 45° and located below the analyser. Only some part of the
illuminator light is actually reflected onto the specimen by the reflector, the
remainder is lost from the system. Equally, only some of the light reflected off the
specimen actually passes through the glass reflector plate up towards the eyepiece.
The efficiency of the glass plate is such that, at most, only 25% of illuminator light
reaching the reflector can actually be transmitted to the eyepiece.

The quality of the surface of the sample is critical when viewing in reflected light.
The sample must be well polished with very fine abrasive paste (usually less than

1 micron grit size) and free of tarnish and other stains. To this end most planetary
materials are prepared as polished thin sections which permit viewing in both
transmitted and reflected light. However, this is not always necessary, for instance
when a sample is largely composed of non-transmitting minerals such as an iron
meteorite containing mostly iron-nickel metal. In this case polished blocks may be
used, but then great care must be taken to ensure that the sample surface is
perpendicular to the viewing axis. This is achieved by either carefully machining the
samples so that the top and bottom faces are flat and parallel or by using simple
mechanical levelling devices that press the sample block into a small lump of
modelling clay on a larger glass slide.

The textures of rocks as viewed in thin section through a microscope can be very
complex and therefore it is useful to record these images. When learning about the
mineralogy of rocks and microscopic techniques it is generally very informative for
students to make detailed hand-drawn sketches of representative areas of a rock as
seen through the microscope in order to ensure that they become familiar with the
important features. However, once those skills are established a more rapid and more
accurate method is to record the views with a camera. Previously this has been done
using film cameras, however, most of this work is now done with CCD cameras




where it is possible for the operator to ascertain immediately the quality of the
captured image (e.g. sharpness of focus, exposure, area of interest).

For simplicity of operation it is important that the image seen by the camera should
be approximately the same size as that seen through the eyepieces — an additional
graticule can be added to the eyepiece to show the field-of-view in the camera.
However, the virtual image viewed through the eyepiece cannot be captured by film
or CCD and therefore it is necessary to redirect the optical path by means of a
retractable prism or mirror to a third ‘eyepiece’ which projects a real image onto the
CCD or film. Ideally the number of pixels of the CCD has to be adequate to ensure
that no optical information is lost compared to the viewed image through the
eyepiece.

e Petrographic microscopes used to study rock samples in thin section use plane-
polarized light produced using a polarizing filter. This plane-polarized
illumination can be delivered from below the samples in transmitted light mode
or from above in reflected light mode.

e The magnification achievable by a petrographic microscope depends on the
magnification of the objective lens and the eyepiece lens and typically ranges up
to x400 with x10 eyepieces, or to x600 with X15 eyepieces. The maximum
resolution of the microscope is governed by the numerical aperture of the
objective and if perfectly set up it should be able to resolve features
approximately 0.3 microns apart.

e Anisotropic minerals cause an incident plane-polarized light beam to be split
into two beams with planes of polarization at 90° to each other (birefringence).
The two beams travel along paths with different refractive indices, resulting in
two light beams emerging from the mineral that are out of phase with each
other. When the two beams are recombined using a second polarizing filter
known as an analyser they generate characteristic interference colours which
may be used to identify the mineral under study.

QUESTION 8.1

The human eye is sensitive to a range of wavelengths from approximately 350 nm to
700 nm. How might the resolution of a microscope be improved if this were the
most important viewing consideration?

QUESTION 8.2

In no more than 200 of your own words, summarize how cross-polars are used in a
petrographic microscope in transmitted light mode when examining minerals that
exhibit birefringence.



13 EXPERIMENTAL UNCERTAINTIES

Measured values of physical quantities are never exact. There are always
uncertainties associated with measurements, and it is important to assess the size
of the uncertainties and to quote them alongside the measured values. So if
astronomers carried out some observations to determine the apparent magnitude of a
particular star, then the form in which they would quote their result would be m, =
12.3 £ 0.2. This means that their best estimate of the value is a V-band magnitude of
12.3, and their confidence in this value is quantified by the uncertainty +0.2, that is,
the true value is probably between 12.5 and 12.1.

The value of the uncertainty conveys important information about a result, as you
can see by considering the following questions.

Two astronomers make measurements of the magnitude of a particular star at
the same time but using different telescopes and detectors. One quotes the result
as m, = 12.3 £ 0.1 and the other as m, = 12.6 £ 0.3. In which result would you
have more confidence?

The quoted uncertainty in the result of the first observation is one-third of that
obtained in the second observation. This indicates that the first observation was
carried out more carefully, or used better equipment, or used a better technique,
so it would be reasonable to have more confidence in the first result. (This
assumes, of course, that the quoted uncertainties are realistic!)

The value of the magnitude of a particular star is measured on two different
occasions by the same astronomer, using the same technique. She finds that the
first time the value is m, = 12.1 £ 0.2 and that the second time the value is m, =
12.3 £ 0.2. Do these results indicate that the apparent magnitude of the star is
different at the two times?

The answer is: not necessarily. Her results are consistent, for example, with the
magnitude of the star being m, = 12.2 on both occasions, since this value falls
within the uncertainty ranges for both observations. (The difference between

the two values might motivate the astronomer to devise a more precise measuring
technique. Had the uncertainties been £0.01, then the results would provide very
strong evidence that the star’s magnitude was different on the two occasions,
since the uncertainty ranges would have been clearly separated.)

An astrophysicist uses a mathematical model of the star to calculate a value for

its magnitude. His result is m, = 12.2 £ 0.1, whereas the observationally measured

value of the star’s magnitude is m, = 12.15 £ 0.02. Is the result for the star’s

magnitude predicted by the model consistent with the observational measurement?

Yes, the prediction and the measurement are consistent, since the uncertainty
ranges overlap.

These three examples illustrate the importance of attaching an uncertainty to a
measured value.

The uncertainties discussed above are referred to by many scientists as experimental
errors, or simply errors. However, this terminology can be confusing, because in
everyday usage an error is a mistake — something that is wrong. Even in the best
scientific experiments, carried out with the utmost care by the most skilled scientists,



there will be an uncertainty in a measured value; the negative connotations of the
word ‘error’ seem to make the use of the term inappropriate here.

Another reason for avoiding the term error in this context is that quoting an error of
+ x in a measurement implies that there exists a definite correct value. However, in
many situations this is not the case. For example, you may be measuring a quantity
that fluctuates with time, so that each measurement gives a different value. In cases
like this, the scatter of the measured values indicates the variability of the quantity
being measured.

For these reasons, we will talk about uncertainties rather than errors in this book.
However, you should keep in mind that many authors, out of deference to
convention, use the term error instead.

It is useful to be aware of the various types of uncertainties that can occur in
astronomical measurements, and to understand how and why uncertainties arise.
This knowledge will enable you to recognize (and take steps to minimize) the
uncertainties in the measurements that you make. While we cannot give a
comprehensive list of all sources of uncertainty in astronomical observations, the
categories outlined below should provide a framework for considering what the
uncertainties might be in a particular situation.

Note that real errors (mistakes) are not included in this discussion. This is not
because they never occur, but because they are impossible to predict or quantify.
Everyone will misread a scale on occasions, transpose digits when writing down a
number, or incorrectly apply a calibration factor to a measurement. However, you
can generally avoid these errors by careful attention to the procedure that you are
following and by always checking measurements and calculations.

(a) Uncertainties caused by lack of skill. This kind of uncertainty is one that
almost falls into the ‘mistake’ category. The ability to start or stop a stopwatch to
coincide with an event that is being timed is a skill that can be developed. Other
uncertainties of this type can arise from not setting up an instrument correctly, or
pointing at the wrong astronomical object! In general, such uncertainties become
smaller as you gain more experience with astronomical work. Also, modern
instruments are generally designed to minimize such uncertainties, for instance,
when setting an exposure time for an observation, the detector will usually be pre-
programmed to carry this out automatically without you having to start and stop it
according to a stopwatch.

(b) Uncertainties caused by instrumental limitations. This kind of uncertainty
is due to the nature of the equipment you are using and can really only be reduced
by improving the quality of the equipment used. For instance, a CCD chip used as
an astronomical detector may produce particularly ‘noisy’ signals. Its response to
light of a certain brightness may vary randomly with time in a way that is not
possible to compensate for using normal bias subtraction and flat-fielding
techniques.

(¢) Uncertainties caused by extraneous influences. A variety of unwanted
effects can cause uncertainties in astronomical observations. Stray light from
around the observatory may interfere with observations, changes of temperature
can lead to uncertainties as the behaviour of a CCD depends on temperature. Again,
you should attempt to eliminate such effects, or at least reduce them.




All of the uncertainties that have been mentioned so far have their origin in the
measuring instruments or the measuring process. They could be present even if the
quantity being measured had a precisely defined and unchanging value. But there are
other rather different uncertainties — uncertainties that could be present even if it were
possible to devise an ideal measuring instrument capable of infinite precision. These
other uncertainties are caused by variations in what is actually being measured. Here
are a couple of examples.

(d) Uncertainties caused by real variations in the quantity that is measured.

In many astronomical observations, the quantity that is being measured is not ‘fixed’.
For example, in a set of observations to measure the apparent magnitude of a star, the
star may (unknown to you) be a pulsating variable star whose magnitude varies with
time. So if you repeated measurements of the star’s apparent magnitude, making
each measurement at a different time, then you might end up with a spread of values.
As long as this spread was too large to attribute to instrumental limitations, then the
spread would indicate the extent to which the star’s apparent magnitude varies.

(e) Uncertainties caused by random fluctuations. This is really a subdivision of
the previous category, and involves (random) variations with time of the quantity
being measured. To take the example of measuring a star’s magnitude again, a CCD
simply records a voltage related to the number of photons arriving at a particular
location on the detector within a given time interval. This number will vary slightly
even if the star’s apparent magnitude is constant. The light from a star arises from
random atomic transitions in its surface layers, and the light then propagates across
space for many years before entering the telescope. It is highly unlikely that precisely
the same number of photons will arrive every second! Such fluctuations are
commonly referred to as noise, and they are always present, superimposed on a
signal that is of interest.

The uncertainties that were described in Chapter 13 Section 1 can be divided into two
quite different types, those that are random and those that are said to be systematic.

A random uncertainty leads to measured values that are scattered in a random
fashion over a limited range, as shown in Figure 13.1. The smaller the random

uncertainty in the measurements, the smaller is the range over which they are scattered.

Measurements for which the random uncertainty is small are described as precise.
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Figure 13.1 Two examples of
random uncertainties. The two sets
of measurements in the table, (a)
and (b), are represented by the
vertical positions of the dashes on
the graph. The ten measured
values for each set are scattered
around the same ‘true’ value.
However, the range over which the
measurements are scattered is
much larger for set (a) than for set
(b). This indicates that the random
uncertainty is greater for set (a)
than for set (b), which means that
the precision of the measurements
is lower for set (a) than for set (b).



Figure 13.2 The effect of
systematic uncertainties. Two sets
of measurements, (a) and (b), are
represented by the vertical
positions of the dashes on the
graph. For set (a), the systematic
uncertainty causes all of the
measured values to be smaller than
the true value. For set (b) the
systematic uncertainty causes all
of the values to be larger than the
true value, but the size of the
uncertainty is smaller than for set
(a). The measurements in set (b) are
therefore more accurate than those
in set (a).

The best estimate that we can make for the value of the measured quantity is the
mean, or average, of the measured values. As you might expect, if we make more
measurements, then the mean value that we calculate is likely to be a better estimate
of the quantity that we are measuring. We will make this statement quantitative later.

Systematic uncertainties have a different effect on measurements. A systematic
uncertainty leads to measured values that are all displaced in a similar way from the
true value, and this is illustrated in Figure 13.2. The two examples shown have the
same random uncertainty — in both cases the spread, or scatter, of the values is the
same. However, in both cases the measured values are systematically displaced from
the true value. The values in set (b) are all larger than the true value, and the values
in set (a) are all smaller. The difference between the mean value of a set of
measurements and the true value is the systematic uncertainty. Measurements in
which the systematic uncertainty is small are described as accurate. Therefore, to
improve the accuracy of a measurement we need to reduce the systematic
uncertainties.

The problem is that we don’t generally know the true value, otherwise we would not
need to make the measurement! So we need to estimate the possible sizes of
systematic uncertainties by considering details of the apparatus and observational
procedures. Alternatively, we need to devise a method of eliminating the systematic
uncertainties.

measured value
o0

——_ '\ systematic,

“uncertainties

Now you might conclude that the goal of every astronomer is to ensure that their
measurements are as precise as possible (i.e. smallest possible random uncertainties)
and as accurate as possible (i.e. smallest possible systematic uncertainties). However,
life is not that simple. Compromises always have to be made. How much time do
you have to make the measurements? What measuring instruments are available, or
what can you afford to buy? What is the purpose of the investigation? (After all,
there is no point in trying to obtain a result that has a precision of 20.01% if +1%
would be sufficient.) In addition, you may want to make a trade-off between
accuracy and precision. Before these decisions can be made, you need to be able to
estimate the accuracy and precision of measurements, or in other words, you need
to be able to estimate the size of the systematic and random uncertainties.




o

One of the most difficult aspects of an astronomical observation can be the
estimation of the uncertainties in the measurements. No two measurements are
identical, so there are no definite rules about how you estimate the size of the
uncertainties. However, it is very largely a matter of common sense. We will provide
a few examples that illustrate how uncertainties can be quantified, and these should
help you to decide how to approach estimating the uncertainties in work that you
carry out.

In many experiments, more than one of the types of uncertainty discussed earlier will
affect a measurement. Sometimes you will be able to estimate the size of cach of the
uncertainties individually and sometimes you will only be able to estimate their
combined effect. But you should always keep in mind that it is only an estimate of the
uncertainty that is required. By definition, an uncertainty cannot have an exact value,
and it is generally sufficient to estimate the value of an uncertainty to one significant
figure, or perhaps two. The uncertainty then allows you to decide how many
significant figures to quote in a result. For example, if the result of a calculation is
that m, = 12.345 67, and the uncertainty is calculated to be 0.043 21, then you
should quote the result as m, = 12.35 £ 0.04. Here the uncertainty is rounded to one
significant figure, and the best value is rounded to four significant figures, since then
the uncertainty is affecting the last digit.

We will start by considering random uncertainties, because they are often more

| straightforward to estimate than systematic uncertainties. Let’s consider a specific
experiment in which the magnitude of star is determined to be m, = 12.29. What
random uncertainty would we associate with such a measurement? Is it £0.1, £1, or
perhaps +0.02?

There are two distinct methods of estimating random uncertainties: one method
involves repeating the measurement a number of times, and the other involves
estimating the uncertainty from knowledge about the instruments and techniques
used. It is good practice to use both methods and to check that they produce
consistent estimates, but this will not always be feasible.

One way to estimate the size of random uncertainties in a measured value is by
making a series of repeated measurements of the quantity. Random uncertainties lead
to a scatter in measured values, and the uncertainty in the measurements can be
deduced from the range over which the values are scattered. So for the magnitude
measurement, introduced in the previous paragraph, we could make a series of, say,
five measurements of the magnitude of the star. Suppose that the results were:

12.31, 12.26, 1242, 12.25, 12.21

Let us assume that these measurements were all made with the same care and skill,
and with the same detector. Then the best estimate we can make of the star’s
magnitude is the mean value of the five measurements, which is denoted by (m,) and
defined as:

12.31+12.26+12.42+12.25+12.21
<mV> = 5

=12.29



Now if there had been no random uncertainty associated with the measurement of
the magnitude, then all of the five values would have been identical. The effect of
the random uncertainty is to scatter the measurements around the true value, and the
larger the random uncertainty, the greater will be the range over which the
measurements will be scattered, i.e. the lower will be the precision of the
measurements. The extent of the scatter therefore indicates:

o the size of the random uncertainty;
e how far from the true value a typical measurement is likely to be; ;
e conversely, how far from a measured value the true value might be;

e the precision of the measurement.

The five measurements are scattered between magnitudes of 12.21 and 12.42,
which is a range of 0.21, or a spread of about 0.1 around the mean. This spread of
0.1 is one way of quantifying the random uncertainty of each measurement, and
we would expect that additional measurements would lie roughly within this range.

However, this is a somewhat pessimistic estimate of the uncertainty in each
measurement, because more of the measurements will lie in the centre of the range
than lie at either extreme of the range. So, as a rough rule of thumb, we generally
take the uncertainty in each measurement as about 2/3 of the spread of the values.
In the example above, we would quote the uncertainty as 2/3 x (30.1) = £0.07. This
simple procedure is perfectly adequate in many cases. It is all that can be done,
when, as above, a relatively small number of measurements is involved and it
becomes quite reliable when more measurements are available.

So for the measurement of the star’s apparent magnitude we could say that:
e the size of the random uncertainty is £0.07 magnitudes;
e atypical measurement is likely to be within £0.07 magnitudes of the true value;

e conversely, the ‘true’ value is likely to be within +0.07 magnitudes of a
measured value;

e the precision of the measurement is 0.07 magnitudes.

Obviously if one measurement were very different from all the others, then using the
spread to determine the uncertainty would give a misleadingly pessimistic value.
Common sense suggests that the single deviant reading should be ignored when
estimating the mean and the uncertainty, and suggests that a few more
measurements should be taken. For example, if the last reading for the star’s
apparent magnitude were my = 12.65 rather than 12.21, then it would be wise to
ignore it, or take further readings.

% How else might you average a set of measurements in order to ignore the
effects of a particularly discrepant value?

You could calculate the median value of the set of measurements instead of the
mean.

In the example above, the variability in the measured values of my could arise not
only from uncertainties in the measuring or calibration process used, but also from
real variations in the luminosity of the star. Even if it were possible to make exact
measurements of the star’s magnitude (i.e. we had a perfect measurement
technique), there would be variability in the measured values if the flux from the star
were varying — possibly due to real physical changes occurring in the star under



investigation. And even if the flux from the star did not vary, then there could be
variability in the measured values because of uncertainties in the measuring process,
for example, uncertainties in timing the exposure or uncertainties in setting the
aperture for the photometry. However, by repeating the measurements we get an
overall measure of the random uncertainties, and it isn’t necessary to make separate
assessments of the random uncertainties due to these different factors. So,
generally, you should not be satisfied with making a single measurement of a
quantity, but should repeat the measurement several times.

Here is an important point that is worth emphasizing:

The presence of a random uncertainty in a measurement can be detected — and
its size estimated — by repeating the measurement a number of times.

The second method of estimating random uncertainties only applies to uncertainties
arising from the measuring process, and doesn’t tell you anything about any
variability in the quantity that is being measured. The method is particularly
important when it is not possible to repeat measurements. It requires you to use
your knowledge of, and experience with, the measuring instruments and the
experimental techniques to estimate the likely random uncertainties.

Returning to the star brightness measurement, suppose that we had only made one
measurement of the star’s magnitude. We could then make estimates of some of the
random uncertainties that might contribute to the overall uncertainty in the
magnitude. For example, we might estimate on the basis of some other
measurements, that there could be a random uncertainty of £0.05 magnitudes due to
the uncertain zero point on the magnitude calibration arising from the standard star
observations.

When discussing just a few repeated measurements, we have characterized the
scatter of the measured quantity by 2/3 of the spread of the values. As more
measurements are made, they are likely to be scattered over approximately the same
range, i.e. the spread will remain the same. However, the measured values are not
evenly scattered throughout this range.

Let’s consider a hypothetical set of observations that involve measuring the
apparent magnitude of a star, and look at the distribution of a set of measurements.
Figure 13.3a shows a histogram of the distribution of 10 measurements of apparent
magnitude, where the height of each bar on the histogram represents the number of
measurements within a certain 0.1 magnitude interval. So, for example, the tallest
bar indicates that four of the measurements were between my = 14.5 and 14.6. The
spread of the results is 0.6 magnitudes, or £0.3 magnitudes, so we would say that
the uncertainty in a single measurement was about two-thirds of this, i.e. 0.2
magnitudes.




Figure 13.3 Histograms showing
the distribution of measurements of
the apparent magnitude of a star
for (a) 10 measurements, (b) 100
measurements, {¢) 1000
measurements. (d) The smooth
curve that represents the
distribution of a very large number
of measurements separated into
very small intervals of magnitude.
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Figure 13.3b shows a distribution of 100 measurements. There is a smoother
variation of the heights of the bars, but the spread of the distribution is similar to that
for 10 measurements. Now imagine that we make 1000 measurements, as shown in
Figure 13.3c. The distribution has taken on a characteristic bell shape. Continuing this
process to the limit of a very large number of measurements, the envelope of the
histogram bars might tend to become a smooth bell-shaped curve (Figure 13.34).

The distributions in Figure 13.3b—d all have extended wings on either side of the
central peak. This means that using the overall spread of the measurements, or even
2/3 of the overall spread, as a measure of the random uncertainty may give a
misleading estimate of how far a typical measurement lies from the mean, since the
spread is calculated from only the maximum and minimum values. To avoid this
problem, we need a measure of the random uncertainty that depends on the values of
all of the measurements, not just the two most extreme. The quantity that is widely
used for this purpose is the standard deviation of the measurements, and Box 13.1
shows an example of how the standard deviation is calculated.



The six steps below describe how the standard
deviation is calculated. Table 13.1 is an example of
this calculation, and the BOLD numbers on the table
correspond to the numbered steps. As you read each
step, you should refer to the corresponding part of the
tabulated calculation.

1 Start with a set of measured values x;, x, x3, ...
X,.. In the example in Table 13.1, n = 8.

2 (a) Add all of the values x; and then (b) divide the
sum by the number of values 7 to obtain the mean
value (x) of the measurements:

<)C> = (x1 +X+x3+ ... + xn)/n = Zx,/n
3 The deviation d of a measurement x is defined as

the difference between that measurement and the
mean (x) of the set of measurements:

d=x-{x)

You should now calculate the deviations d;
corresponding to each value x;:

d; =x; — (x)
4 Calculate the squares of each of the deviations, d l.z.

5 (a) Add together all of the squares of the deviations
d? and then (b) divide by the number of values 7 to
obtain the mean square deviation:

(d}y=Zd?In

6 Take the square root of the mean square deviation.
This is known as the standard deviation s,

s, =(a?)

The standard deviation is generally quoted to one or
two significant figures.

Table 13.1 An example of how the standard deviation of a set of measurements is calculated.

1 3
Measured value, Deviation,
% di=x;—(x)
53 +0.01

54 +0.11

54 +0.11

51 -0.19

50 -0.29

52 -0.09

56 +0.31

53 +0.01

2a

Sum of 8 values,

2x;=42.3

2b

Mean of 8 values,

Zx/n={xy=5.29

4
Squared deviation,
d?
0.0001
00121
0.0121
0.0361
0.0841
0.0081
0.0961
0.0001
5a

Sum of squared deviations,
Td} =0.2488

5b
Mean of squared deviations,
(d})=Zd?/In=0.0311

6
Square root of mean squared deviations,

s, = \/@ =0.176,

ors, =0.2to 1 sig fig




The process of calculating the standard deviation described in Box 13.1 is an
extended definition, but it is useful to have a more succinct definition.

The standard deviation s, of a set of » measured values x; is the square root
of the mean of the squares of the deviations d; of the measured values from
their mean value {x).

D d!
s, = ’ (13.1)
n

where the deviation d; of the measured value x; from the mean value {x) is

d; = x; — (x), (13.2)

and the mean value {(x) of the measurements is
(x) = Zxi/n (13.3)

The standard deviation is the most commonly used measure of the scatter of a
set of measurements, and is used to quantify the likely random uncertainty in a
single measurement.

The standard deviation is sometimes known as the root-mean-square (rms)
deviation. Explain why this name is appropriate.

The standard deviation is calculated as the square root of the mean of the square
values of each of the individual deviations.

The standard deviation described above is also sometimes referred to as the
population standard deviation. This is to distinguish it from a related quantity
known as the sample standard deviation and defined by

2
2.4 (13.4)

n—1

Sp1 =

The sample standard deviation corrects the tendency to understate the uncertainty in
measurements, especially when the sample size is small. For most practical
purposes, the difference between the two definitions is insignificant though, and you
should just stick to the definition given by Equations 13.1 to 13.3.

How do values for the standard deviation compare with what we would get by using
the simple ‘2/3 spread’ rule introduced earlier? Well, for the data in Table 13.1, the
spread is 5.6 — 5.0 = 0.6, or 0.3, so 2/3 of the spread is £0.2. The standard
deviation calculated in Table 13.1 is 0.176, or 0.2 to one significant figure. This
illustrates why the simple rule is adequate for many situations where we only need a
rough estimate of the uncertainty of a measurement.

In real situations, as opposed to hypothetical ones, astronomers rarely make
sufficient measurements to obtain a smooth distribution. Even if they did, the shape




of the distribution curve might depend markedly on the particular type of
measurements that were being made. A useful model to describe how often you
will count a certain number of occurrences of an event (like the detection of a
photon) in a certain time interval is the Poisson distribution. The Poisson
distribution can be used to describe a large variety of phenomena that are relevant
to astronomy, however it is only applicable when each event counted is
independent of all the other events. The Poisson distribution is not symmetric
about its mean value, but as the number of events increases, it does become
symmetrical, and approaches the shape of a standard mathematical form known
as the normal distribution, which is also known as the Gaussian distribution.
This is the distribution already shown in Figure 13.3d. Notice also that plotting
on a magnitude scale, which is logarithmic, distorts a distribution to some extent.

Figure 13.4 shows how the standard deviation of a Gaussian distribution curve is
related to the spread of the curve. It is clear that a substantial fraction of
measurements deviates from the mean value by more than the standard deviation
s,. For a particular range of the measured variable, the area under the distribution
curve represents the fraction of measurements that lie within that range. For a
Gaussian distribution, 68% of measurements lie within one standard deviation,
i.e. within £s,, of the mean value. Therefore, 32% of measurements are expected
to differ from the mean by more than the standard deviation s,. Note that the
distribution curve falls off rapidly as the measurements deviate further from the
mean. Table 13.2 shows the percentage of measurements falling within specified
ranges centred on the mean value.
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| ! 125, | indicating that 68% of

l" > n = 1| measurements are expected to fall

; +3s,, within this range, hence the ‘rule of

two-thirds’ used in Section 13.3.1.

Table 13.2 The percentages of measurements within, and outside, various ranges of
values centred on the mean for a Gaussian distribution.

Range centred on mean value +s, 12s, 135, s,
Measurements within range 68% 95% 99.7% 99.994%
Measurements outside range 32% 5% 03% 0.006%




It is important to bear these percentages in mind when the standard deviation is used
to indicate the uncertainty in a measurement. The statement that my = 14.5 £ 0.2
does not mean that all measurements of the quantity my will lie within the range
from 14.3 to 14.7. If the standard deviation is 0.2 magnitudes, then on average only
68% of measurements will lie within that range and 32% will lie outside. Therefore,
roughly two-thirds of all measurements will lie within one standard deviation (i.e.
within *s,)) of the mean, and one-third of all measurements will lie more than one
standard deviation from the mean.

The standard deviation is a measure of the precision of measurements. The greater
the precision, the smaller will be the scatter and therefore the smaller will be the
standard deviation. This means that, with data of greater precision, the Gaussian
distribution curve will have a much narrower peak around the mean value. This is
illustrated by the three distribution curves shown in Figure 13.5.
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The broadest and least highly

peaked of the three curves (a) has

the largest standard deviation, and random uncertainty decreasing;
corresponds to measurements with standard deviation decreasing;
the largest random uncertainties precision of measurement increasing

and with the lowest precision.

An important type of random uncertainty arises when investigating processes that
involve counting events that fluctuate randomly, such as the number of photons
from a star arriving on a CCD detector. In this section you will see that this type of
uncertainty can easily be calculated using a simple expression.

Let’s consider just such an experiment in which a CCD is used to determine the
number of photons arriving each minute from a particular star. Suppose that, after
determining the ratio between output voltage and photon count in a particular
measurement, it is calculated that the CCD recorded 9986 photons in one minute in
the patch of the field containing the image of the star. How many photons would
you record if you repeated the measurement for another one-minute period?

Since each individual arriving photon is an event subject to random fluctuations, the
number of photons arriving in a period of one minute will vary. However,
measurements of the number of photons arriving each minute will be clustered
around a well defined mean value (n). In fact, if you repeated the measurement 1000
times you might find that the number of photons arriving per minute was distributed
as shown by the histogram in Figure 13.6a.
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The mean {n) of the 1000 measurements corresponds to the position of the centre
of the peak of this symmetrical distribution, i.e. 10 000 photons per minute. If you
were to calculate the value of the standard deviation from the results in the
histogram you would get a value of 100 photons per minute. As you saw earlier, the
standard deviation is used as a measure of the random uncertainty in a single
measurement, and so we can say that the uncertainty in this case is £100. It is not a
coincidence that this uncertainty of £100 is the same as the square root of the mean
number of photons, 10 000.

Now imagine that you make many successive measurements of the number of
randomly occurring events (such as photons arriving from a star) in a given period.
As long as the mean number of events per counting period is large, then as the
number of measurements increases, the envelope of the histogram of the results will
tend to a Gaussian distribution curve, as shown in Figure 13.6b. The centre of the
distribution indicates the mean number {n) of events in the given period. More
interestingly in the present context, the standard deviation of the measurements is

<n> , and so, as was shown in Figure 13.4, 68% of the measurements lie within

t 1/<n> of the mean. For example, if the mean is 10 000 photons, then 68% of the
measurements will produce a result between 9900 and 10 100 photons. Alternatively,
if the mean is 900 photons, 68% of the results will lie between 870 and 930. The
standard deviation <n> defines the width of the distribution, and it is therefore

straightforward to identify the uncertainty associated with a single counting
measurement.

Figure 13.6 (a) Ahistogram
showing how often particular
numbers of photons were recorded
from a certain star in 1000 counting
periods of 1 minute. (b) As long as
the mean number of events per
counting period is large, then the
distribution of the results from a
very large number of measurements
approximates to a Gaussian
distribution curve. The mean {n)
corresponds to the centre of the
peak and 68% of all the
measurements are within ++/n of
this mean.




If the number of randomly fluctuating events counted in a given period is n,
the uncertainty in this number is given by:

uncertainty = \/; (13.5)

This uncertainty is a measure of the likely difference between the value n that
would be counted in any single measurement and the mean value of many
measurements of n, namely (n), that would be found from a long series of
repeated measurements.

Now Equation 13.5 indicates that the uncertainty increases as the number of events
counted increases. With the example we have used, about 10 000 events were
counted in a one-minute interval, and the uncertainty is about £100. In a six-second
period, only about 1000 events would be counted, with an uncertainty of +32.
Increasing the counting interval to 10 minutes would give about (100 000 £ 320)
events, and 100 minutes would give about (1000 000 + 1000) events.

Do these numbers suggest that it is better to count for a shorter period than for
a longer period?

No. It is true that the uncertainty in the number of events gets smaller

as the counting period gets shorter (and the number of events gets smaller).
However, the uncertainty Jn becomes a much larger fraction of the number of
events n as the counting period gets shorter. By counting for a longer time we
can reduce the uncertainty\/; as a fraction of the number of counts 7.

It is important to note that increasing the number of events reduces the
fractional uncertainty:

uncertainty «/; 1 o~
measured value n  .fp (13.6)

fractional uncertainty =

This reduction in the fractional uncertainty as the counting period (and hence the
number of events) increases is demonstrated by the data in Table 13.3.

Table 13.3 Uncertainties associated with counting random events for different
intervals, with the same mean event rate (100 events per minute) in each case. Although
the uncertainty increases as Jn (third row) as the counting interval increases, the
fractional uncertainty \/; / n (fourth row) decreases. All values are quoted to one
significant figure.

Counting interval #/minute 0.1 1 10 100
Typical number of events, # 10 100 1000 10000
Uncertainty in number of events, «/; 3 10 30 100
Fractional uncertainty in number of events, 0.3 0.1 0.03 0.01
Nnin=1/n

Uncertainty in number of events per minute 30 10 3 1

= /n /¢ /minute~!



Another way to appreciate the improvement that results from counting for a longer
interval is to compare the values of the uncertainty in the number of events per
minute, which are displayed in row 5 of Table 13.3. These were calculated by
dividing the uncertainties in row 3 by the corresponding interval in row 1: they show
a similar improvement with increasing time (and number of events) to that shown by
the fractional uncertainties.

Unfortunately, the rate at which the fractional uncertainties improve with increasing
n is frustratingly slow. For example, to reduce the fractional uncertainty by a factor
of 10, the number of events must be increased by a factor of 100. Of course, that
requires counting for an interval that is 100 times longer. So one of the skills every
astronomer needs to develop is the ability to decide how to balance the time invested
in an observation against the precision and accuracy of the result.

Systematic uncertainties and random uncertainties are often both present in the same
measurement, and their effects were illustrated in Figure 13.1 and Figure 13.2. The
spread of repeated measurements allows us to estimate the size of the random
uncertainties, and averaging the measurements tends to cancel out the effects of
such uncertainties. Unfortunately, systematic uncertainties are usually much more
difficult to estimate. Repeated readings do not show up the presence of systematic
uncertainties, and no amount of averaging will reduce their effects.

Systematic uncertainties often arise from the measuring instrument used. For
example, a metre rule may in fact be 1.005 m long, so that all measurements made
with it are systematically 0.5% too short. Systematic uncertainties like this can often
be discovered and estimated by calibrating the measuring instrument against a more
accurate and reliable instrument. If this can be done, the measured results can be
corrected and so the effects of this type of systematic uncertainty can be reduced,
possibly to a level that is negligible compared with other uncertainties.

Another common type of systematic uncertainty is a ‘zero’ uncertainty. The dark
current present on a CCD image is an example of this type of effect — a signal may
be recorded on the CCD even when no light falls upon it. However, once noted and
recorded, this type of systematic uncertainty is straightforward to eliminate by
subtracting the zero error from the measured values.

It is important here to distinguish between systematic uncertainties that you can
measure and allow for — and which, therefore, will not contribute to the uncertainty
in the final result — and systematic uncertainties for which you can only say that
they are ‘likely to be +x’. For example, in the case of measuring a star’s apparent
magnitude earlier, the two different kinds of systematic uncertainty could occur
when timing the exposure of a CCD image. If you were doing this manually using a
stopwatch, then perhaps the watch might run slow. Comparing it to a more accurate
clock might show that it lost 10 s in a half-hour exposure, which means that
exposure times need to be scaled up by a factor of 1800/1790 to get the actual
exposure time. If this calibration correction is made, then the slow running of the
stopwatch would not contribute to the uncertainties in the observation. The
calibration procedure eliminates this systematic uncertainty. However, you might
have a tendency to start or stop the stopwatch too early or too late each time.

You wouldn’t know that such a systematic uncertainty was present, but it is
certainly possible. A reasonable estimate for the possible size of such an uncertainty




is £0.2 s (a typical human response time), since anything longer would probably be
detected. This uncertainty of 0.2 s in each exposure (let us suppose of

10 minutes), or 1 part in 3000, would lead to an uncertainty of 1 part in 3000 in
the magnitude of the star that is measured.

So the difference between these two types of systematic uncertainty is that we
know that one is definitely present, and we can measure and correct for its effect,
whereas the other may or may not be present, and we can only make an educated
guess at its possible size. Essentially, once we have identified, measured and
corrected for the first type of uncertainty, it ceases to be a source of uncertainty in
the final result.

So your aim as an astronomer is to look critically at your observations — at the
instruments, the methods of measurement, the techniques that you use — and to
identify and quantify the uncertainties that may be present. You may need to calibrate
instruments, or make measurements with different instruments, or use alternative
techniques, in order to do this. You can then decide whether or not you need to
attempt to reduce the systematic uncertainties.

In most astronomical observations, more than one source of uncertainty will be
present. Several random and systematic uncertainties may contribute to the
uncertainty in measurements of a single quantity. In addition, measurements of a
number of different quantities (each of which has an uncertainty associated with it)
may have to be combined to calculate the required result. Therefore, it is important
to know how these different uncertainties are combined to determine the overall
uncertainty in the final result.

It is not our aim here to get involved in statistical theories, so the rules for
combining uncertainties will be presented without proof. The major objective is that
you should be able to choose and apply the appropriate methods for combining
uncertainties in the work you are engaged in. You should however be aware that all
the rules given depend on the assumption that the sources of error are random and
independent, which is not always true!

The standard deviation s,, of a set of measurements tells us about how widely
scattered the measurements are — it indicates how far the individual measurements
are likely to be from the mean value. We usually take the mean value of the
measurements as our best estimate of the true value, and so what we really need to
know is how far the mean value is likely to be from the true value. In other words,
we want to know the uncertainty in the mean value.

We’ll consider again the hypothetical set of observations of the flux from a star,
which was introduced earlier, and we will assume that the Gaussian distribution in
Figure 13.7a represents the distribution of a very large number of measurements of
this star’s flux. (It is the flux that is measured. Taking the logarithm of it to get a
magnitude means that the Gaussian is distorted.) Suppose that we make five
measurements of the flux from the star, and calculate the mean value of these five
measurements. We then repeat this process nine times, so that we end up with ten
values of the mean, each of which is based on five different measurements.

Figure 13.7b shows what these measurements and their mean values might look like.
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I 'j || 11 Figure 13.7 (a) A Gaussian
} distribution curve for

L) I measurements of the flux from a

particular star. (b) The blue bars

marked on each of the ten

AL & J llr apEe scales indicate five

|| measurements of the flux from
the star, and each red bar

(b) indicates the mean value of a

set of five values.

Is the spread of the ten red bars that indicate the mean values in Figure 13.7b
greater than, smaller than, or the same as, the spread of the individual
measurements of the star’s flux? Explain the reason for your answer.

The spread of the means from the ten sets of measurements, that is, the spread
of the red bars in Figure 13.7b, is smaller than the spread of individual
measurements, which is represented by the width of the distribution curve
shown in Figure 13.7a. This is because a set of five measurements will almost
certainly include some that are greater than the true mean (F) and some that are
smaller. Therefore, when the mean of five measurements is calculated, it will be
closer to the true mean (F) than most of the five individual measurements are.

Suppose that you repeated the process described above, but with sets of 20
measurements, rather than sets of five measurements. Would you expect the
spread of the means from the ten sets of 20 measurements to be greater than,
smaller than, or the same as, the spread of the means from the ten sets of five
measurements?

The means from the sets of 20 measurements will have a smaller spread than
the means from the sets of five measurements. The larger the number of
measurements in a set, the smaller the statistical fluctuations in their mean
value, and the closer the mean will lie to the mean of a very large number of
measurements.




Figure 13.8 (a) The Gaussian
distribution curve for
measurements of the flux from a
particular star. (b) Values of the
means from ten sets of five
measurements each; these means
are less spread out than the
individual measurements.

(c) Values of the means from ten
sets of twenty measurements
each; these means are less spread
out than the means of five
measurements shown in (b).

This is illustrated in Figure 13.8, which shows the distribution curve from

Figure 13.7a, together with the ten values of the means from the sets of five
measurements (Figure 13.8b) and ten values of the means from sets of

20 measurements (Figure 13.8c). The means from the five-measurement sets

are less widely scattered than the distribution of individual measurements, and the
means from the 20-measurement sets are even less scattered.
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This is an important result, with far-reaching implications.

The uncertainty in a mean value decreases as the number of measurements
used to calculate the mean increases.

In other words, you can reduce the uncertainties in an experiment by increasing the
number of measurements that you make.

Let’s now make this statement about the uncertainty of a mean value quantitative.

The uncertainty ¢, in a mean value that is derived from » measurements that
have a standard deviation s,, is

Sy

m \/_n_ (13.7)
We will refer to o, as the uncertainty in the mean. It is usually referred to
as the standard error in the mean, but as we explained earlier we prefer to
avoid the term error in this context.

(e

As noted earlier, there are two slightly different definitions of standard deviation.
The population standard deviation has Jn on the bottom line, while the sample
standard deviation has 4/n —1. Similarly, the uncertainty in the mean can also be
defined as




On = (13.8)

This latter formula gives a more realistic result when the number of measurements is
small. However, both formulae give similar results with large n, and it is probably
best to stick to Equation 13.7.

It is important to note the effect of the square root that appears in Equation 13.7. If
we take five measurements, then i/n = 2.2, so Om = 0.45s,,. If we take ten times as
many measurements, i.e. 50 measurements, then \/; =7.1, so 6, = 0.14s,,. So for
the increased effort of taking ten times more measurements, we only reduce the
uncertainty in the mean by a factor @ / \/g , which is 4/10 or ~ 3. It is also
important to realize that breaking up a series of measurements into sets has no effect
on the overall uncertainty — take all 50 together, or ten sets of five, or five sets of ten
— the uncertainty in the mean is the same.

The significance of the uncertainty in the mean can be brought out in the following
way. Suppose we make many sets of n measurements, and evaluate the mean for
each set. Then the width of the distribution of the means will be characterized by the
uncertainty in the mean oy, rather than by the standard deviation s,. So whereas the
standard deviation tells us about the scatter of individual measurements, the
uncertainty in the mean of n» measurements tells us about the scatter of the mean
values that are each derived from n measurements.

If we assume that the mean values have a Gaussian distribution, then we can be
more explicit about the meaning of the uncertainty in the mean oy, Suppose that the
mean value is 10.4 + 0.3, where o, = 0.3 is the uncertainty in the mean. This does
not indicate that the true value necessarily lies within £ 0.3 of the mean value of
10.4; the uncertainty in the mean is not like an engineering tolerance. If the mean
values have a Gaussian distribution, then there is a 68% probability that the
calculated mean value lies within +o,,, = £0.3 of the true mean value, a 95%
probability that it lies within 20, = £0.6 of the true mean value, and a 99.7%
probability that it lies within +30,, = +0.9 of the true mean value. Conversely, we
can say that there is a 68% probability that the true value lies within +0,, of the
calculated mean value, a 95% probability that the true value lies within +25,, of the
calculated mean value and a 99.7% probability that the true value lies within 36, of
the calculated mean value.

Let’s return to the example measuring the magnitude of a star, and consider how we
would combine a systematic uncertainty of £0.05 magnitudes arising from the
calibration process and a random uncertainty of 0.04 magnitudes in the measured
brightness. The obvious answer might seem to be to add them directly to get a total
uncertainty of 0.05 + 0.04 = 0.09. But this really gives an unduly pessimistic
assessment of the uncertainty. After all, the random uncertainty and the systematic
uncertainty are assumed to be entirely independent, so it is highly unlikely (though
possible, of course) that, for any given measurement, these two uncertainties will
both be at their maximum positive values, or at their maximum negative values.
There will generally be a partial cancellation of the two uncertainties. So the rule that
we use for combining two independent uncertainties in the same quantity is

BX = \/ox? + B2 (13.9)

= =



where 68X is the overall uncertainty, and dx; and &x, are the individual uncertainties
that are to be combined. Thus, in the example of the star’s apparent magnitude,

8X =+/0.05% +0.042
= J0.0025+0.0016

=+/0.0041

= (.06 magnitudes

This uncertainty is larger than either of the contributing uncertainties, but smaller
than their sum.

If more than two uncertainties are involved, then the method follows the same
principle. Suppose that we think that there is an additional systematic uncertainty of
10.03 magnitudes in measuring the brightness of the star. Then the overall
uncertainty is

8X =+/0.052 +0.04 +0.032
= (.07 magnitudes

Again, this is larger than the individual uncertainties, but smaller than their sum.

To summarize:

Independent uncertainties dx;, dx,, dx3, ... in a measured quantity will give rise
to an overall uncertainty 8X given by

OX = /o2 + 002 + 82 +... (13.10)

When uncertainties are not independent, they are much more difficult to deal with,
unless the form of the dependence is known precisely. Their dependence might
mean, for example, that a large positive uncertainty from one source was always
associated with a large negative uncertainty from another source, thus leading to
cancellation, and an overall uncertainty that was much smaller than the individual
uncertainties. Alternatively, a positive uncertainty from one source may always be
associated with a positive uncertainty from another source, so that the overall
uncertainty is really more like the sum of the individual uncertainties. No simple
rules can be given for dealing with dependent uncertainties, and each case must be
analysed individually.

In the last section, we were concerned with combining uncertainties in a single
measured quantity to find the total uncertainty in that quantity. However, the aim
of many investigations is to evaluate something that depends on several measured
quantities, each of which has its own uncertainty.

Table 13.4 gives a set of rules, from which you can select the appropriate one to
apply in a given situation.



Table 13.4 Rules for combining uncertainties. The first column lists various
relationships between a quantity X and measured quantities A, B, which have
uncertainties A, 8B. The second column indicates how the uncertainty 8X in X is related
to the uncertainties A, 6B. The symbols j, k and n represent constants (i.e. they have no
uncertainty associated with them).

Dependence of X on A and B Expression used to calculate 6X
) 0X bA
X=kA 8X =k A, or equivalently X" A (13.11)
X=kA +jB e ——
X kA B 8X =k 84)2 +(j 8B)? (13.12)
. 2 2
X = kA xjB X _[[6A N OB
X=KkA/jB x Wa, "\ B (13.13)
X = kA" X ns—A- 13.14
= % n (13.14)

There are several important points to note about the expressions for the uncertainties
in Table 13.4.

e Only + signs appear under the square roots in the expressions for 8X and 3X/X,
irrespective of whether the function is a sum, difference, product or ratio.

o The constants j and k have no effect on the fractional errors in Equations
13.11, 13.13 and 13.14.

e Note also that percentage uncertainties can be used in place of fractional
uncertainties in the equations in Table 13.4.

As well as combining uncertainties in quantities that appear as sums, differences,
products, ratios or powers, in astronomy you will also need to evaluate uncertainties
in astronomical magnitudes based on uncertainties in the measured flux, i.e. the
photon count recorded on the CCD. Since the relationship between astronomical
magnitude and flux involves a logarithmic function, the procedure is a little more
complicated and deserves a careful explanation.

Earlier you saw that Equation 6.1 gives the general relationship between the
magnitudes and fluxes of two astronomical objects. We can simplify this expression
to write the astronomical magnitude m of a single object in terms of its flux F as

m=-2.5 logo(F) + K (13.15)

where K is a constant term that is determined by the observational set-up you are
using. Now, the flux is simply the number of photons arriving on the CCD. For
simplicity, let’s assume it’s the number of photons measured within a certain
aperture around a star, after background subtraction and all the usual CCD
calibration steps have been performed. What then is the uncertainty in the value of
the astronomical magnitude?

For any mathematical function X = f(A) the uncertainty in X, indicated by 8X, is
related to the uncertainty in the quantity A, indicated by 04, by the relationship:

0X = flA + 0A) - f(A) (13.16)




In other words, the uncertainty in X is equal to the value of the function evaluated at
(A + 6A) minus the value of the function evaluated at A.

In the specific case of astronomical magnitudes we may work this out as follows:
dm = [-2.5 log)o (F + 8F) + K] - [-2.5 logo (F) + K]
=-2.51logo (F + &F) + 2.5 logy, (F)
=-2.5 [logo (F + 8F) - log;q (F)]
F+ SFJ

= —2.510g10(

Note that we can neglect the minus sign here, as we’re only interested in the size of
the uncertainty in m, so the general equation is:

5m=2.510g10(1+6?Fj (13.17)

Now, in the case where we’re dealing with a single flux measurement whose only
source of uncertainty is random counting statistics, 8F = JF for large fluxes, so
this becomes

- ]

om =2.5log,, [1 + N

1
=2.5logy| 1+ —
10( w/FJ

So, if the CCD records a flux of 10 000 photons from a particular star, the
uncertainty in the flux due to counting statistics is +100 photons (i.e. 1% of
the value). The uncertainty in the star’s instrumental magnitude is therefore
2.5 logo(1 + 1/100) ~ 0.01. This is a useful rule of thumb:

(13.18)

An uncertainty of 1% in the measured flux leads to an uncertainty of 0.01
magnitudes.

What flux would you require in order to obtain an uncertainty in the magnitude
of +0.05?

We have
1
0.05=25 log,, (1 + Fj
so. 10005725 =1+L

JF

F

F= ! ’
“{ 10005725 _4

F =450

10005725 _4 1




A list of uncertainties in magnitudes corresponding to a given flux of photon counts
is given in Table 13.5. Note, these are only the random uncertainties due to counting
statistics in the flux from the object itself.

Table 13.5 Uncertainties in magnitudes corresponding to a given flux of photon counts.

Flux / (photon counts) Uncertainty in flux/ Uncertainty in
photon counts magnitude
100 000 300 0.003
10000 100 001
1000 30 003
100 10 01

Although we have explained this in some detail, most software packages that perform
aperture photometry on CCD images will carry out this calculation automatically for
you. At the click of a button they will measure the background subtracted flux inside
an aperture and display the result in astronomical magnitudes with its associated
uncertainty value due to counting statistics. Nonetheless, it is important that you
appreciate what is going on ‘behind the scenes’ to produce these numbers.

The previous section simply considered the uncertainty in the flux that arises as a
result of the uncertainty in the number of photons detected from the star itself.
However, in reality there will be other sources of uncertainty, or noise, when
determining the brightness of an astronomical object. As explained in Chapter 5,
these are:

e sky noise: there will be an uncertainty in the number of photons in the sky
aperture that is subtracted from the target aperture.

e thermal noise: this is the dark current referred to in Chapter 5 Section 2 and is
due to thermal motions in the CCD itself knocking some electrons free and
causing them to be recorded as an additional count rate.

o readout noise: this is the random noise added by the CCD electronics as the
signal from each pixel is read out. The value of the readout noise is generally a
known quantity for any particular CCD and is expressed as a number of
electrons.

Since the sky noise and the thermal noise both depend on the area of the aperture and
pixel size and both increase as the exposure time increases, they can be combined
into a single measure as the background noise per pixel.

Let us suppose the total number of photons in the target aperture is Ny, and the
number of photons in the background aperture is Ny, per pixel, where the
background aperture encompasses np pixels. Further suppose that the readout noise
is R electrons per pixel. The uncertainty due to the number of photons in the target
aperture is /N, , and the uncertainty due to the number of photons in the

background aperture is /N, X np . Then, following the rules in Table 13.4,
the total uncertainty or noise in the measurement of the brightness of a target is

noise = [N, + (Nyoe X1p) + (R? X 1p) (13.19)




The signal-to-noise ratio is then simply
signal-to-noise = Ny, /noise (13.20)

Having calculated the signal-to-noise ratio, the uncertainty in the magnitude value
may be determined using Equation 13.17. The following question gives an example
of this type of calculation.

Suppose a target aperture contains 36 000 photons, and the background
aperture on the CCD image contains 1100 photons per pixel and encompasses
24 pixels. The readout noise is 6 electrons per pixel.

(a) What is the signal-to-noise ratio of the measured flux of the target?
(b) What is the uncertainty in magnitudes of this measurement?

(a) The total noise in the measurement is

noise = \/36000 +(1100%24) + (6% x 24) =252
So the signal-to-noise ratio of the measurement is 36 000/252 ~ 140.

The uncertainty in magnitudes is given by :

OF 252
om=25log,,| 1+ — |=2.5log,y| 1+
m glo[ F ) glo( 36000

J =0.0075

or better than one-hundredth of a magnitude.

In this example, the target is quite bright, so the readout noise is negligible, but the
noise from the target itself and the background noise are comparable in size. j

The examples in the previous subsection illustrate a few general points that are {
worth highlighting. First, uncertainties, by their very nature, cannot be precisely
quantified. So a statement like my = (8.732 + 0.312) is rather silly, and this result
should be quoted as my = (8.7 £ 0.3). As a general rule:

Uncertainties should usually be quoted to one significant figure; two significant
figures are sometimes justified, particularly if the first figure is a 1.

You should bear this in mind when trying to assess the size of uncertainties and
when doing calculations involving uncertainties.

Secondly, you can safely neglect small uncertainties. The total uncertainty in a result

may be a combination of several contributing uncertainties, and these contributing |
uncertainties may have widely varying sizes. But, because the uncertainties (or

fractional uncertainties) are combined as the sum of the squares, as a general rule:

When calculating uncertainties in sums and differences, ignore any
uncertainties that are less than 1/3 of the largest uncertainty.

When calculating uncertainties in products and ratios, ignore any fractional
uncertainties that are less than 1/3 of the largest fractional uncertainty.



Thirdly, concentrate your efforts on reducing the dominant uncertainties. As we have
shown, the largest uncertainties will dominate the uncertainty in the final result, and
small uncertainties can often be neglected. Therefore, it is very important not to waste
a lot of time reducing small uncertainties when much larger uncertainties are present.

Find out as early as possible in an investigation what the dominant uncertainties
are, and then concentrate your time and effort on reducing them.

Finally, take particular care when differences and powers are involved. Suppose that
you measure two angles, 8; = (73 £ 3) degrees and 8, = (65 £ 3) degrees, and you
then calculate the difference, i.e. 8 = 8, — 8, = 8 degrees. The uncertainty is

——
86 = /(36,)% +(38,)*

=3% +3?
= \/ﬁdegrees
=4°

So 6 = (8 + 4) degrees. This is a 50% uncertainty compared with only about 4% in
the individual measurements!

To take another example, suppose you measure an edge of a cube as [ = (6.0 £ 0.5)
mm, and then calculate the volume: V = 3 = 216 mm?. The uncertainty is given by
8V 38l _3x05
v [ 6

Because the volume is the third power of the length, the fractional uncertainty in the
volume is three times greater than the fractional uncertainty in the length
measurement. As a general rule:

If a calculation involves taking the difference of two nearly equal measured
quantities, or taking the power of a measured quantity, then pay particular
attention to reducing the uncertainties in those quantities.

e Random uncertainties affect the precision of a measurement; systematic
uncertainties affect the accuracy of a measurement.

¢ Random uncertainties may be estimated by repeating measurements. The best
estimate of the measurement is the mean value: {x) = Zx,/n and the size of the
random uncertainty in any individual measurement is about 2/3 of the spread of
the measurements.

e The standard deviation s, of a set of measured values x; is the square root of the

mean of the squares of the deviations of the measured values from their mean value:

5 2
_ I| Z (x; — <x>)
n \| n
e In the limit of many measurements, the typical distribution of a set of
measurements will follow a Gaussian (normal) distribution. 68% of the

measurements will lie within £1 standard deviation of the mean value.



e  When counting randomly fluctuating events, the uncertainty in the number of
events is given by the square root of the number of events.

o The uncertainty in the mean value of a set of n measurements that have a
standard deviation of s,, is:

Sy

m \/;
e The rules for combining uncertainties in sums, differences, products, ratios and
powers are given in Table 13.4.

o

e Tor the specific example of converting uncertainties in flux measurements to
uncertainties in astronomical magnitudes:

dm=2.5log,, (1 + SFFJ

e When determining the overall uncertainty (or noise) in an astronomical flux
measurement, the contributions from the flux of the target itself, the sky noise,
the thermal noise of the CCD and the readout noise of the CCD should each be
taken into account.

QUESTION 13.1

Ten measurements were made of the magnitude of a quasar, and the values obtained
were:

m, =220, 21.6, 21.8, 22.3, 22.1, 22.0, 21.9, 22.2, 21.9, 22.2
(a) What is the mean value of the quasar’s magnitude?

(b) Use the spread of the measurements to estimate the random uncertainty in an
individual measurement of the quasar’s magnitude.

(c) Calculate the standard deviation of the ten measurements, and compare it with
the estimate of the random uncertainty obtained in part (b).

(d) Calculate the uncertainty in the mean magnitude.

QUESTION 13.2

Ten measurements are made of the wavelength of a spectral line in the spectrum of
a star. The mean value of these measurements is 585 nm and their standard deviation
is 6 nm.

(a) What uncertainty should be quoted for the mean wavelength?

(b) Are the measurements consistent with a true value for the wavelength of
591 nm?

(c) If the mean value needed to be known with a precision of 1 nm, how many
measurements of the wavelength would have to be made?

QUESTION 13.3

In this question we return to the measurements reported in Question 6.2, namely an
aperture of radius 12.0 pixels is placed around a star on a CCD image and encloses a
total count of 2.50 x 10° photons. An annulus of inner radius 18.0 pixels and outer
radius 24.0 pixels surrounds the star and includes a total background count of 7.00
x 10° photons. What is the uncertainty in the instrumental magnitude of the star due
to counting statistics? (You may neglect the readout noise.)



14 ANALYSING EXPERIMENTAL DATA

After making various observations, processing astronomical images, taking
measurements from the images and estimating uncertainties associated with those
measurements, the data then usually have to be processed in some way to obtain the
final result. You may think that this part of an investigation is rather trivial compared
with setting up the equipment and making the measurements, but carelessness at this
stage can ruin all your previous hard work. So here are a few hints that should help
you to analyse your data with a minimum of effort and a maximum chance of
ending up with an appropriate answer.

(a) Have you recorded all data necessary for the analysis? This first point is a
reiteration of what was said in Chapter 12 about keeping records in your
observatory notebook. It is vital that you record all of the necessary data and
information that you will need to calculate the final result. If you leave the
observatory, or dismantle the apparatus, and then discover that you omitted to
record a vital piece of data needed to analyse your results, your whole investigation
may be worthless. In this context, it is worth saying that a clearly laid out notebook
will make it much easier for you to check what you have, and what you haven'’t,
recorded.

(b) Plan your data analysis. Before you start to do any calculations with your
data, think carefully about how you will calculate the final result. You may need to
combine algebraic equations, and rearrange them so that the quantity that you want
to calculate is the subject of the equation. After doing this, it is advisable to check
that the expression that you’ve derived is correct. One way to do this is by checking
the consistency of the units on either side of the equation. Alternatively, you can ask
yourself whether the dependence of the subject of the equation on the other
variables is what you would expect.

It’s a good idea to think about how you will analyse the data when you are planning
the measurements that you will make. This will allow you to leave appropriate space
in your observatory notebook for extra columns in data tables, if they are needed
for the analysis stage. It is also worthwhile developing the habit of laying out
calculations neatly, and spacing them out. You are much less likely to make errors

if your results are easy to read.

(c) Substitute numerical values at the end of the analysis. It is good practice to
leave the substitution of numerical data into equations until the latest possible stage
of a calculation.

(d) Check your calculations. The use of calculators and computers reduces the
time and tedium required to analyse data, and allows many methods of data analysis
to be used routinely. However, it is important to check the results of calculations, as
it is incredibly easy to key an incorrect number into a calculator or to make a simple
slip in mental arithmetic. One way to check a calculation is to repeat it in a different
order. For example, if you calculated the value of the expression

6.63x107* x2.998x10° 529
542x107° x1.602x107%°

in the order

6.63 x 10734 x 2.998 x 108/542 x 109/1.602 x 1071°




