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Chapter 7
Matter and light

Because atomic behavior is so unlike ordinary experience, it is very difficylt
gel -used to, and it appears peculiar and mysterious lo everyone — hoth {0 1}, 1
novice and to the experienced physicist. Even experts do not understand it ;,
way they would like 1o, and it is perfectly reasonable that they should not )
be(-:ause all of direct human experience and of human intuition applies 1o l,a
objects. E
— Richard Feynman, The Feynman Lectures on Physics, 1965

Chapter_l introduced the situations that produce line and continuous spectra
summ'arlzed by Kirchhoff’s laws of spectrum analysis. This chapter descends ?S
the microscopic level to examine the interaction between photons and atomo
We show how the quantum mechanical view accounts for Kirchhoff’s laws ansd
how atomic and molecular structure determines the line spéctra of gasses’

To u.nderstand modern astronomical detectors, we also turn to a qua;ltum
me.chamcal account —this time of the interaction between light and matter in the
solid stéte. The discussion assumes you have had an introduction to quantum
ITICChanlCS in a beginning college physics course. We will pay particular atten-
tion to some simple configurations of solids: the metal oxide semiconductor
(MOS) capacitor, the p—n junction, the photo-emissive surface, and the super-

conducting Josephson junction. Each of these is the physical basis for a distinct
class of astronomical detector.

7.1 Isolated atoms

7.1.1 Atomic energy levels

A low—fiensity gas produces a line spectrum, either in absorption or emission,
depfandmg upon how the gas is illuminated (review Figure 1.7). The formation
of lines is easiest to understand in a gas composed of single-atom molecules
like helium or atomic hydrogen. Consider the interaction between a single atorr;
and a single photon. In either the absorption or the emission of a photon, the
atom usually changes the state of one of its outermost electrons which, are
therefore termed the optical electrons. The same electrons are alsé) called the
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(rons, since they largely influence an atom’s chemical properties by
. ating in covalent and ionic bonds with other atoms.

aﬂlcl[;rvations of atomic spectra and the theory of quantum mechanics both
Obzstraw that the energy states available to any bound electron are quan-
g That is, an electron can only exist in certain permitted energy and angular-
ized- fum s’lates. In theory, these permitted states arise because an electron (or
molﬂ‘:‘}:er particle) is completely described by a wave function. In the situation
:an)’ c}:ich the electron is bound in the potential well created by the positive
e ‘: e of an atomic nucleus, the electron’s wave function undergoes construc-
f;i igngerferencc at particular energies, and destructive interference at all others.
gince the square of the wave function gives the “probability density” of the
t a certain location and time, the electron cannot have energies

lec
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electron existing a .
ihat cause the wave function to interfere destructively with itself and go to zero.

Physicists call these forbidden states. In the isolated atom, most energies are
forbidden, and the energies of the rare permitted states are sharply defined.
Figure 7.la illustrates the permitted energy levels for a fictitious atom,
which appear as horizontal lines. In the figure, energy, in units of electron-
volts, increases vertically. (One electron-volt (eV) is the energy gained by
an electron accelerated by a potential difference of one volt. 1 eV =
1.6022 X 107" 1.) There are seven bound states, labeled a—g, ..., in this
particular atom. (Real atoms have an infinite number of discrete states — see
below.) These different energy levels correspond to different configurations or
interactions of the outer electrons. The idea here is that the atom must exist in one
of these permitted energy states. The lowest energy state, the one assigned the
most negative energy, is called the ground state (level a in the figure). This is
the configuration in which the electrons are most tightly bound to the nucleus,
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Fig. 7.1 (a) Permitted
energy levels for an
electron in a hypothetical
atom that has seven
bound states (a—g). The
most tightly bound states
(lowest energy)
correspond to an electron
location closer to the
nucleus. (b) Absorption
or emission of photons.
The probabilities of
different transitions can
be vastly different from
one another.
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and would be the state of an undisturbed atom at zero temperature. Above the
ground state are all other permitted excited states, up to the ionization level. The
ionization level, conventionally assigned zero energy, cotresponds to an atom
that has so much internal energy that an electron is just able to escape. In that
situation, the free electron is no longer part of the atom, and the remaining
positive ion will have intemal energy states described by a completely different
diagram. Because the wave function of the free electron in a vacuum is not
restricted by variations in potential energy, the energy of the free electron is not
quantized.

You can think of bound states with higher energies as situations in which the
optical electrons are on average physically further away from the nucleus. Be
aware, though, that the vision of electrons orbiting the nucleus like planets in the
Solar System (i.e. the early Bohr theory) is limited in its usefulnes:. The best
answer to the question “where is this electron?” is a function that says certain
locations are more likely than others, but, unlike the energy situation, a rather broad
and sometimes complicated range of positions is possible for each bound state.

7.1.2 Absorption of light by atoms

Even though we can’t see the positions of an atom’s electrons, we can measure
their energies when light interacts with atoms. Remember that a photon carries a
specific amount of energy that is directly proportional to its frequency, v:

E=hy==— (7.1)

The atom can make a transition from one bound state to another by either
absorbing (the process is called photo-excitation) or emitting a photon of
the correct frequency or wavelength, as illustrated in Figure 7.1b. In the
process of photo-excitation, the photon is truly absorbed, and ceases to exist.
The figure shows a photo-excitation transition from the ground state (level a,
which has energy E,) to the first excited state (level b, which has energy E).
The photon responsible for this transition must have wavelength

= he
° AEab
where
AEab = Eb . Ea

This explains why a beam of light with a continuous spectrum that passes
through an atomic gas will emerge exhibiting an absorption line spectrum. Since
only photons with energies corresponding to the energy difference between bound
electron states, AEj;, can be absorbed, only lines with the corresponding wave-
lengths of 4;; will be present as absorption features in the spectrum that emerges.

7.1 Isolated atoms

As Figure 7.1 illustrates, photons capable of ionizing the atom can have any
wavelength, so long as they are energetic enough to move an electron from a
pound to a free state. This is observed in the spectrum as a feature called an
absorption edge — a drop in the intensity of the transmitted continuum at wave-
Jengths shorter than the ionization wavelength.

7.1.3 Emission of light by atoms

An isolated hot gas produces an emission line spectrum. Again, you can under-
stand why by considering the quantized energy levels. In Figure 7.1, for exam-
ple, an atom changing from state e to state ¢ must lose energy. It can do so by
creating a photon with energy AE... This process of de-excitation by photo-
emission can occur spontaneously, or it can be stimulated to occur by an incom-
ing photon of exactly the transition energy. This latter process is the equivalent
of negative absorption: one photon collides with the atom and two identical
photons emerge. Stimulated emission is the basis for the operation of lasers and
masers.

If there is a significant number of free electrons in a hot gas, then the gas will
emit continuous radiation along with the usual emission lines. As illustrated in
Figure 7.1, a photon is emitted if a free electron loses energy and recombines
with a positive ion, forming the bound state of the neutral atom. The resulting
radiation will be continuous, since the energy of the free electron is not quan-
tized. Transitions from one free state to another are also possible, and will also
contribute to a continuous spectrum.

7.1.4 Collisions and thermal excitation

Atoms prefer to exist in the lowest possible energy state, the ground state. An
isolated atom in any excited state will spontaneously decay to a lower state. The
length of time an atom can expect to remain in a particular excited state depends
on the rules of quantum mechanics, but if there is a quantum-mechanically
“permitted” transition to a lower state, the half-life of the excited state usually
is on the order of 10~% seconds. How do atoms get into an excited state in the
first place? One way, of course, is by absorbing electromagnetic radiation of the
proper wavelength. A second path is via collisions with other atoms or particles.
Atom-on-atom collisions can convert kinetic energy into internal energy in the
form of optical electrons in excited states. In the very eventful environment of a
hot gas, atoms that want to stay in the ground state have little chance of doing so
for long, because they are kicked up into higher states by collisions. A hot gas
glows because the resulting excited atoms will decay back to lower energy
levels, emitting photons in the process.

Collisions can transfer energy out of an atom as well as into it. With many
collisions, at constant temperature, the population and de-population rates for
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one level due to all processes are equal, and the expected number of atoms in g
particular bound state is well defined. The Boltzmann distribution describes the
number of atoms in each energy state in such a situation of thermodynami,
equilibrium. Consider any two bound states, i and j, having energies E; and E,.
The Boltzmann equation gives the ratio of the number of atoms in these twq
states as

E — 'E b“ = ﬁ:‘}
= gJr_c}tp{ o (7.2)

Here g; and g; are the statistical weights of each level (g is the number of distinct
quantum mechanical states at the specified energy — see the next section).
Boltzmann’s constant, k, has the value 1.381 X 107> JK™' =8.62 X 105
eVK™\ -

7.1.5. Specification of energy levels

In the terminology of quantum mechanics, the state of every bound electron is
specified by four quantum numbers:

n, the principal quantum number, can take on all positive integer values 1, 2, 3, ...
This number is associated with the radial distribution of the probability density
of the electron as well as with its energy, and in the terminology used by
chemists, specifies the shell.

1, the azimuthal quantum number, can take on values 0, 1,...,(n — 1). It can be
associated with the angular distribution of the probability density, and can have a
secondary effect on the energy of the state.

m, the magnetic quantum number, can take on values 0, =1,..., £/ 1t describes
the possible interaction between the electron and an imposed magnetic field. It
can have an effect on the energy of the electron only if a field is present.

s, the electron spin quantum number can have only two values, +1/2 or —1/2. It
can affect the electron energy by interacting with the angular momenta of other
parts of the atom.

In particle physics, a fermion is a particle like the electron, proton or neutron,
whose spin quantum number has a half-integer value like +1/2, =3/2, etc. Any
particle’s intrinsic angular momentum has the value (h/27)+/s(s + 1), where #
is Planck’s constant and s is the spin quantum number. Particles with integer
spin (0, =1, etc.) are called bosons.

The Pauli exclusion principle states that no two identical fermions may
occupy the same quantum state. This demands that no two electrons bound
in an atom may have the same four quantum numbers (n, I, m, s). Table 7.1
lists all possible values of the four quantum numbers for electrons in the first

7.1 Isolated atoms

Table 7.1. Quantum numbers of the first 30 bound atomic states (up to the
ground state of zinc). In the periodic table, the 4s states are usually filled
before the 3d states, 5s before 4d, etc. See Figure 7.2

Quantum numbers

n / m s Name of configuration Number of states
0 0 +1/2 1s 2
2 0 0 +1/2 2s 2
2 1 -1 +1/2
0 *1/2 2p 6
+1 +1/2
3 0 0 +1/2 3s 2
3 1 -1 +1/2
0 +1/2 3p 6
+1 +1/2
3 2 -2 +1/2
-1 *1/2
0 +1/2 3d 10
+1 +1/2
+2 *1/2
4 0 0 *1/2 4s 2

few levels. Each of the states listed must be either empty or occupied by a
single electron. The ground state of an atom with atomic number Z will have
the lowest-energy configurations occupied, up to the Zth available state, and
all other states empty. The actual energy of a particular state depends not
only on the atomic number and the values of the four quantum numbers for
the occupied states, but also on other details like the atomic weight, and
magnetic interactions between the electron, nucleus, and electrons in other
states.

The energy of an electron will depend most strongly upon both » and /
quantum numbers. The configuration of electrons in an atom is therefore usu-
ally described by giving these two numbers plus the number of electrons in that
n, I level. The spectroscopic notation for a configuration has the form:

x -

ny

where

n is the principle quantum number,

x is the number of electrons in the level —many electrons can have the same
1, I'so long as they have different m and/or s values, and




202

Matter and light

y codes the value of the / quantum number according to the following
scheme:

Designation s P d f g h i k, 1, etc.

Lithium, atomic number 3, for example, has the ground-state cgnfiguration
1s% 2s!; that is, two electrons in the n = 1 state, one with quantum numbers
(1, 0, 0, —1/2), the other with (1, 0, 0, 1/2). The third lithium electron (this is
the valence electron) is in the z = 2 level with quantum numbers either (2,0,0,
~1/2) or (2, 0, 0, 1/2). Table 7.2 gives some further examples of electron
configurations.

Figure 7.2 is a schematic energy-level diagram that shows the relative ener-
gies of the electron configurations in atoms. As one moves from element to
element in order of increasing atomic number, electrons are added from the
bottom up in the order suggested by Figure 7.2. (There are minor exceptions.)

The periodic table, one of the triumphs of human learning, summarizes our
knowledge of the chemical properties of the elements, and recognizes that
chemical behavior is periodic in atomic number. The table is organized accord-
ing to similarities in optical electron configurations. Each row or period contains
elements with identical values of n for outer electrons. In chemical terminology,
the valence electrons of atoms in the same period are all in the same shell. The

Table 7.2. Examples of a few electron configurations

Element Atomic number Electron configuration of the ground state
Hydrogen 1 1s’

Helium 2 1s?

Boron 5 152 252 2p°

Neon 10 182 282 2p®

Silicon 14 152 252 2p°® 3s? 3p?
Argon 18 152 252 2p°® 352 3p® = [Ar]
Potassium 19 152 252 2p°® 3s? 3p°® 4s" = [Ar] 4s'
Scandium 21 [Ar] 3d" 487
Germanium 32 [Ar]3d"° 4s? 4p?
Krypton 36 [Ar]13d"° 4s? 4p°® = [Kr]
Rubidium 37 [Kr] 5s"

7.1 Isolated atoms

6d(10)
S5f(i4
75(2)
Energy 6p(6)
5d(10) Q
414
6s(2
5p(6)
4d(10)
5s(2)
4p(6)
3d(10) 0
4s(2)
3115 6)
3s(2
ape) —X2— N
Is(2)
L
K

atomic properties of elements, like electro-negativity, ionic radius, and ioniza-
tion energy all trend generally in one direction along the row. Chemical behav-
ior likewise trends from one extreme to the other along a row. Period three, for
example, ranges from the reactive metal sodium, through the less reactive
metals magnesium and aluminum, the semi-metal silicon, the increasingly reac-
tive non-metals phosphorus, sulfur, and chlorine, and the inert gas, argon. Ele-
ments in the same column of the table, in contrast, have the same electron
configuration in their outer shells, and therefore all have very similar chemical
properties. The noble gases, for example, (helium, neon, argon, krypton, xenon,
and radon — column 18 or group VIIIA) all exhibit chemically inert behavior,
and all have a filled outer shell with eight electrons in the s°p® configuration.
Similarly, the halogens in column 17, all highly reactive non-metals like fluorine
and chlorine, have outer shells with the s®p® configuration. There is also a
secondary trend in properties moving down a column: the chemical reactivity
of the halogens, for example, decreases steadily from fluorine, the lightest, to
astatine, the heaviest.

Because of the order in which configurations are filled (see Figure 7.2) many
elements have identical valence electron configurations and differ only in their
inner electron shells. For example, the rare-earth elements, or lanthanoids —
cerium (Z = 58) through ytterbium (Z = 70) — are all in period 6 of the table,
but have chemical properties that are almost indistinguishable from one another.
This is because they have identical outer shells (6s%), and differ only in the
configurations of their inner (primarily 4f) sub-shells. )

For atoms with multiple valence electrons, the energy level of an excited
configuration may depend not only on the quantum numbers of the electrons, but
upon the interactions between the electron spins and angular momenta. For
example, the excited state of helium that has configuration 1s' 2p' has four
possible energies spread over about 0.2 eV. States differ because of different
relative orientations of the two electron spins and the /= 1 angular momentum of
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Fig. 7.2 Schematic energy
levels of electronic
configurations. Each
level is labeled with the
spectroscopic
designation, including
the number of electrons
needed to fill the
configuration in
parentheses. Chemical
shell designations (K, L,
etc.) are at the bottom of
each column. The
diagram indicates, for
example, that the two 5s
states will fill before the
ten 4d states. Energy
levels are illustrative only
of the general order in
which configurations or
sub-shells are filled and
are not to scale. There are
several exceptions to this
overall scheme.

.
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Fig. 7.3 Energy levelsin a
simple molecule. Right
and left columns are
different electronic
states, as indicated by the
quantum number A.
Quantum numbers J and
v specify the rotational
and vibrational states,
respectively. We show
only three rotation states
and seven vibration
states in the lower
electronic level.
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the p electron (directions are quantized and thus limited to four possibilities).
The details of how multiple electrons interact are beyond the scope of this book,
but for now, it is sufficient to recognize that such interactions can cause the
energy level of a configuration to split into multiple values.

7.2 Isolated molecules

The outermost electrons of a molecule see a more complex binding potential due
to the presence of two or more positively charged nuclei. Generally, this results
in a greater number of electronic energy states. Each electronic state is still
characterized by four quantum numbers, but in the molecule, the value of the m
quantum number has an important effect on the energy level. More importantly,
the molecule itself has internal degrees of freedom due to its ability to rotate
around its center of mass, as well as its ability to vibrate by oscillating chemical
bond lengths and angles. These internal rotational and vibrational modes are
quantized as well, and they vastly increase the number of energy states permit-
ted to the molecule.

Quantum mechanical theory approximates the total internal energy of a
molecule as the sum of three independent terms:

E = Egicetron + Evibration T Erotation

In addition to the quantum numbers specifying the electronic state, a diatomic
molecule like CO or TiO will have one quantum number, J, to specify the
rotational state, and one, v, for the vibrational state. Specification of the
vibrational mode for molecules with more than two atoms becomes quite
complex.

Figure 7.3 is a schematic energy-level diagram for a fictitious diatomic
molecule. The energy levels in the figure are not scaled precisely. Transitions
between the ground state and the first excited electronic state are usually in the

= } A=1
: v=2
J=0
J=7—
: v=1
J=0
J=7
J
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7.3 Solid-state crystals

range 0.5 to 100 eV. Transitions between adjacent vibrational states are about
100 times smaller than this, and between adjacent rotational states, about 106
times smaller yet.

The spacings between the rotational levels at different electronic and vibra-
tional states are similar. As a result, the spectra of even simple diatomic mol-
ecules show a complicated pattem of lines consisting of extensive bands, with
each band composed of many closely packed lines.

7.3 Solid-state crystals
7.3.1 Bonds and bands in silicon

A crystal is a mega-molecule in which the pattern of atoms and bonds repeats
periodically with location. Many of the detectors we discuss in the next chapter
are made of crystalline solids, so we now describe in detail the electronic
structure of silicon, the most important of these materials. The silicon atom,
located in column IVa of the periodic table, has 14 electrons, four of which are
in the outer shell, with configuration 3s® 3p”. The outer shell will be filled when
it contains eight electrons, not four. According to the theory of chemical
valence, the component atoms of a molecule try to attain the electron structure
of an inert gas (eight outer-shell electrons) by an appropriate sharing or transfer
of electrons. Shared or transferred electrons produce, respectively, covalent or
ionic bonds between atoms.

Consider the formation of a silicon crystal. Figure 7.4a shows what happens
to the energy levels of an isolated silicon atom when a second silicon atom is
brought closer and closer to it. As the electron wave functions begin to overlap,
the levels split into two, outermost first. The nearer the neighbor, the greater is
its influence, and the greater the splitting of levels. The outer electrons of both
atoms can enter those levels since their wave functions overlap.

If we construct a crystal atom by atom, new energy states appear with each
addition. For five atoms in a row, we expect something like Figure 7.4b. As
crystal construction continues, more and more electron states become available
as more and more atoms are added to the structure. Since even a tiny crystal

@ 4 (b} 4
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Interatomic spacing (5 atoms)

Nuclear separation (2 atoms)
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Fig. 7.4 (a) Changes in the
electron energy levels in
a silicon atom as a
second atom is brought
into close proximity. (b)
The same diagram for the
case of five atoms in a
linear matrix.
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Fig. 7.5 Schematic
diagram of the bands in
silicon crystals. The
diagram at right shows
the bands formed at the
preferred inter-atomic
spacing. Dark-gray bands
are occupied, light-gray
are empty but permitted.
Energies in the band gaps
{white) are forbidden to
electrons.
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contains on the order of 10°° atoms, each causing a split in the energgf levels, the

spacing between levels must be on the order of 10™2° eV. These levels are so
closely spaced that for practical purposes we treated them as a continuous band
of available energies. If bands do not overlap, they will be separated by energy
band gaps. An electron anywhere in the crystal lattice is permitted an energy
anywhere in a band, and is forbidden an energy anywhere in a gap.

Figure 7.5 shows the energy situation in crystalline silicon. The preferred
inter-atomic spacing between nearest neighbors is Ry (0.235 nm at room temper-
ature). Note that at this spacing, the 3p and the 3s energy levels overlap. The
result is called a crossover degeneracy, and energies in the crossover region are
forbidden by quantum mechanics. The permitted states in the quantum mechan-
ical view are certain linear combinations of s and p states, not the separate s and
p states of the isolated atom. The periodic potential pattern of the regularly
spaced nuclei in the crystal causes electron wave functions to interfere con-
structively at particular locations, and produces a set of states called sp*-hybrid
orbitals. Each silicon atom contributes eight such states to the bands. Four of the
sp> hybrid orbitals, the ones with lowest energy, correspond to an electron
having its most probable location midway between the atom and one of its
nearest neighbors. The nearest neighbors are at the four vertices of a tetrahedron
centered on the nucleus. These four sp hybrid orbitals all have energies that lie
in the valence band and constitute the bonding states. Four other sp> hybrid
states have energies in the conduction band and locations away from the bond-
ing locations. These are the anti-bonding states.

From now on, we will use band diagrams, like the right side of Figure 7.5, to
account for all the electrons in the entire crystal. At zero temperature all the anti-
bonding states are empty and make up the conduction band. The difference
between the energy of the top of the valence band, E,, and the bottom of the
conduction band, £, is called the band gap energy:

EC, :EC—EV

In silicon, the band gap is 1.12 €V at room temperature.

7.3 Solid-state crystals

The most probable physical location of the valence electrons is on the line
joining neighboring nuclei. In a silicon crystal, one would find two electrons
in each of the light-gray region of Figure 7.6a — one from each atom — and
this pair of shared electrons constitutes a covalent bond. Each atom forms
four such bonds, symmetrically placed, and each atom therefore “sees” eight
outer electrons — a complete shell. The bonds arrange themselves in a tetra-
hedral structure about each nucleus. The symmetry here reflects the trans-
formation of the two s state and two p state electrons of the isolated silicon
atom into the four hybrid sp® state electrons of the silicon crystal.
X-Ray diffraction studies confirm that this tetrahedral structure repeats
throughout the crystal in a three-dimensional pattern called a diamond
lattice, as sketched in Figure 7.6b.

7.3.2 Conductors, semiconductors, and insulators

It is instructive, although overly simple, to explain the differences between
electrical conductors, semiconductors, and insulators as arising from differences
in the size of the band gap and in electron populations within the bands. The
important principle is that a material will be a good conductor of electricity or
heat if its electrons can accelerate (i.e. change quantum state) easily in response
to an applied electric field.

An analogy may help you understand the effect of band structure on con-
ductivity. Imagine that you are standing in an almost empty room. You are free,
in this environment, to respond to a whim to run across the room at top speed.
On the other hand, if thé same room is packed shoulder-to-shoulder with people,
running is out of the question, no matter how strong your desire. Indeed, in a
sufficiently dense crowd, moving at all is impossible.

Similarly, an electron in relative isolation can help conduct electricity or heat
because it can (and must) accelerate when a global electric field is imposed, or
when a strong local field arises during a collision with another particle. In a
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Fig. 7.6 (a) Tetrahedral
covalent bonds for sp®
hybridized orbitals for
one atom (black) pictured
at the center of a cube
(solid lines). Its nearest
bond-forming neighbors
are at the four corners of
the cube. These define
the vertices of a
tetrahedron (dashed
lines). The electron
bonding states are
shown as light-gray
ellipsoids — the regions
where there is the highest
probability of finding a
valence electron. (b) A
stick-and-ball model of
the diamond lattice.
Darker grays represent
atoms higher up in the
vertical direction. Each
cube outlines a unit cell
of the crystal, and a
complete crystal is built
by assembling many
identical adjoining unit
cells in three dimensions.
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Fig. 7.7 Band structure of
insulators, conductors,
and semiconductors:

(a) an intrinsic
semiconductor at zero
temperature; (b) the
same material at a higher
temperature; and (c) an
extrinsic semiconductor.
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crystalline solid, however, options are more restricted. The Pauli exclusion
principle explains that an electron can only accelerate (i.e. chan@}: quantum
states) if it can move into a new state that is (a) permitted and (b) not occupied
by another electron. In a perfect silicon crystal at zero temperature, these two
conditions are difficult to satisfy: every electron is in the valence band and every
electron part of a covalent bond. Every permitted state in the band is occupied.
The electrons, in effect, are packed shoulder-to-shoulder. Although we have
ignored movement of the nuclei (which can oscillate around their mean posi-
tions), as well as surface effects, the basic conclusion is: electron crowding
makes cold silicon a poor conductor of electricity, heat, and sound.

There are available states at much higher energies — the anti-bonding states
in the conduction band. If an electron can acquire at least enough energy to jump
the band gap, then it finds itself in the relatively empty conduction band where it
is able to move around. In the crowded-room analogy, you might have enough
energy to climb up a rope through a trap door to the empty room on the next
storey, and there you are free to run.

Silicon conductivity will improve at higher temperatures, because an electron
in a hot crystal might gain enough energy from a thermal collision to reach a
state in the conduction band.

Figure 7.7 shows simplified diagrams of the band structures typical of metals,
insulators, and semiconductors. In a typical insulator, the valence band is completely
filled. The band gap is large compared to both the thermal energy, k7 (at room
temperature (300 K), kT = 0.026 ¢V), and any other energy sources. Because of
the large gap, valence electrons cannot reach any permitted states in the conduction
band. The exclusion principle forbids any electron to move into an already occupied
state, so electrons cannot move at all — the material is a non-conductor.

A metallic conductor, in the second panel of the figure, has unoccupied
permitted states immediately adjacent to the occupied valence states. If an
electron near the top of the valence band absorbs even a tiny amount of energy,
it may move into the conduction band, and from there to virtually anywhere in
the material. The horizontal coordinate in these diagrams represents position in

the material.

7.3 Solid-state crystals

The figure shows three different views of materials called semiconductors.
The first, (a) an intrinsic semiconductor, 10oks like an insulator, except it has a
small band gap. This is similar to the band diagram of silicon at zero temper-
ature. A valence electron can jump the gap into the conduction band by
absorbing a modest amount of energy, either from thermal excitation or from
some other energy source. Illustration (b), for example, shows the material in
(a) at a high temperature. A few electrons have absorbed sufficient thermal
energy to rise to the conduction band. This material will conduct, but the size
of the current is limited because only these few conduction band electrons can
easily change states. More electrons, of course, will rise to the conduction
band to improve the conductivity if the temperature is increased further, and
materials of this kind, in fact, can be used to make temperature gauges (ther-
mistors).

The other thing to notice in illustration (b) is that whenever an electron is
boosted into the conduction band, it must leave behind an empty state in the
valence band. Another valence electron can shift into this vacated state and
create a new empty state in the location it vacates. Since yet another electron
can now move from a third location to fill this second empty state, it is clear that
valence electrons can move through the crystal by occupying and creating
empty states. It is easier to concentrate on the motion of the empty states, and
to think of these holes as the entities that are moving. Holes thus behave like
mobile positive charges in the valence band, and will contribute to the overall
electrical conductivity. In intrinsic semiconductors, holes are usually less
mobile than conduction-band electrons.

The third semiconductor (c) also has a few electrons in the conduction
band, but without any corresponding holes in the valence band. Materials of
this kind, called extrinsic semiconductors, are extremely important in the
construction of most electronic devices. A second class of extrinsic semicon-
ductors has valence-band holes without corresponding conduction-band
electrons.

7.3.3 Intrinsic semiconductors

Semiconductor crystals

A pure silicon crystal forms by linking all atoms with the tetrahedral covalent
bond structure pictured in Figure 7.6. Part (b) of that figure shows the arrange-
ment of a few dozen silicon atoms and bonds, and although not all bonds have
been drawn, you can assure yourself that, as the pattern repeats, each atom
will end up with four bonds. This geometry, called the diamond lattice, insures
that each atom shares eight electrons, completely filling the outer shell and
producing a chemically stable structure. Indeed, the regularity of the dia-
mond-lattice structure is tightly enforced, even if impurities are present in the
silicon.
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Table 7.3. Periodic table of the elements near column IVA

IIB s2 A s%p! IVA s%p? VA s?p® VIA s%p?
B 5C N o)
Al 145 P S
Zn Ga 2Ge As Se
Cd In 505n Sb Te
Hg Tl 82pp Bi Po

Elements with similar outer-electron configurations form similar diamond
lattice crystals. These are in column IVA (also called col 14) of the
periodic table, and include carbon, germanium, and tin.' Similar bonds also
form in binary compounds of elements symmetrically placed in the table on
either side of column IVA. For binary compounds, the crystal structure is
called the “zinc blend” structure, which resembles Figure 7.6 except for
alternation of the chemical identity of the nuclei on either end of each bond.
Most useful semiconductors exhibit the diamond or zinc blend crystal struc-
ture. (Exceptions include lead sulfide and zinc oxide.) Table 7.3 shows part of
the periodic table containing elements that combine to form important semi-
conductors.

Examples of binary-compound semiconductors are gallium arsenide (GaAs,
a III-V compound) and cadmium teluride (CdTe, a II-VI compound). Some
ternary compounds, notably (Hg,Cd;_,)Te, and quarternary compounds like
In,Ga;_,As,P;_,, also form useful semiconductors. Commercially, silicon is
by far the most commonly used semiconductor. Germanium and gallium arsen-
ide also find important commercial applications.

Semiconductor materials generally have a resistivity in the range 107 to
10° ohm cm, midway between that of a good conductor (107° ohm cm) and a
good insulator ( > 10" ohum cm). As we have already seen, resistivity depends
critically on both temperature and the size of the band gap. Table 7.4 lists the
band-gap energies for several semiconductors. Note that since the lattice spac-
ing in a crystal is likely to change with temperature, so too will the band gap.
Carbon in the diamond allotrope is an insulator because its band gap is so large
that very few electrons can be thermally excited to the conduction band at
room temperature; other carbon allotropes (graphite, carbon nanostructures)
are conductors.

! The most common allotrope of tin, white tin, the familiar metal, has a tetragonal crystal structure.
Gray tin, a less common allotrope, crystallizes in the diamond lattice. Lead, the final member of
column IVA, crystallizes in a face-centered-cubic lattice.

*ﬁ_
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Table 7.4. Some common semiconductors. Forbidden band-gap energies
and cutoff wavelengths at room temperature. A more complete table is in
Appendix H1. Data from Sect. 20 of Anderson (1989)

Material Band gap (eV) Ae (pum)
\Y

Diamond C 5.48 0.23
Silicon Si 1.12 1.1
Germanium Ge 0.67 1.85
Gray tin Sn 0.0

Silicon carbide SiC 2.86 0.43
n-v

Gallium arsenide GaAs 1.35 0.92
Indium antimonide InSb 0.18 6.89
I-vi

Cadmium sulfide Cds 2.4 0.52
Cadmium selenide CdSe 1.8 0.69

Mercury cadmium teluride Hg.Cdy_.Te 0.1-0.5 (x=0.8-0.5) 12.4-25
Iv-vi
Lead sulphide PbS 0.42 2.95

Conductivity and temperature

At zero temperature, all the materials in Table 7.4 are non-conductors. As
temperature increases, thermal agitation causes ionizations: electrons are pro-
moted to the conduction band, free of any one atom; similarly mobile holes are
created in the valence band. The material thus becomes a better conductor with
increasing temperature. At equilibrium, we expect the rate of electron-hole
recombinations to exactly equal the rate of thermal ionizations.

How, exactly, does an electron in a bonding state receive enough energy to
jump the band gap? Optical electrons can collide with one another, of course,
but it is important to note also that the lattice itself is an oversized molecule that
can vibrate by oscillating bond lengtﬁ or angle. Just as with molecules, lattice
vibration states are quantized with respect to energy. Solid-state theory often
associates each discrete lattice vibration energy with a particle, called a phonon,
an entity analogous to the photon. Changes in electron state may thus involve
the absorption or emission of a phonon. An electron can jump the band gap
because it absorbs a phonon of the correct energy, and can lose energy and
momentum by creation of, or collision with, a phonon.

At a particular temperature, the density of electrons at any energy within
the bands will depend upon the product of two functions, (a) the probability,
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Fig. 7.8 Electron and hole
density in an intrinsic
semiconductor. (a) The
locations of the band
edges and the Fermi level
midway between them.
(b) The probability of
finding an electron in a
permitted state as a
function of energy, P(E).
The solid line shows P at
zero temperature, and the
broken lines at two
higher temperatures.

(c} The density of
permitted states as a
function of energy, S (E).
(d) The density of
electrons (the product of
(b) and the highest
temperature curve in (c))
and holes as functions of
energy. The horizontal
scale of plot (c) has been
expanded to show detail.
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P(T, E), of an electron having that energy, and (b) the number density of
available states at each energy, S:

n(T,E) = P(T,E)S(E)

With respect to the probability of a fermion having a particular energy, recall
that the exclusion principle causes important restrictions on occupancy. This is
certainly the case for the electrons in the bands of a semiconductor, where most
of the valence states are fully occupied. In such a situation of electron degen-
eracy the probability per unit energy that an electron has energy, E, is given by
the Fermi—Dirac distribution:

P(T\E) = T oxpl(E = E) /AT

(7.3)
This expression reduces to the Boltzmann distribution, Equation (7.2), at high
temperatures. At the limit of zero temperature, the Fermi—Dirac distribution
requires that all of the lowest energy states be occupied, and all of the higher
states (those with energies above Ef) be empty. That is, at 7= 0,

1,E<E
P(E) = {0,E>EE (74)

The parameter Ef is called the Fermi energy, and might be defined as that
energy at which the probability for finding an electron in a permitted state is
exactly one half. According to this definition, the Fermi energy will itself be a
function of temperature for some systems at high temperature. However, for all
cases we are concerned with, the Fermi energy can be treated as a constant equal
to the energy of the highest permitted state at 7= 0.

Figure 7.8a shows the energy bands for silicon at absolute zero, where elec-
trons will fill all available states in the permitted bands up to the Fermi level,
which falls midway between the valence and conduction bands. Figure 7.8b
plots Equation (7.3) at three different values of temperature.

7.3 Solid-state crystals

Figure 7.8c shows a schematic representation of the density of permitted
states, S(E), for the valence and conduction bands of silicon. Note that S(E),
which gives the number of quantum states that are available at a particular
energy (per unit energy and volume), is approximately quadratic near the per-
mitted band edges and vanishes in the band gap.

The product P(E)S(E) gives n.(E), the number density of electrons at
energy E. The number density of holes at energy E in the valence band is just

ny = [1 — P(E)]S(E)

Figure 7.8d shows these two functions, n, and ay, for a non-zero temperature.
The total number densities of charge carriers of each kind (negative or positive)
are given by the integrals of these functions in the appropriate band —conduction
electrons and valence holes:

nN = / n.d¥
Er

Ep
np = / nth
—oo

In intrinsic semiconductors, the number density of these two kinds of
charge carriers in equilibrium must be equal, so np = ny. The temperature
dependence in Equation (7.5) follows from the Fermi distribution, and has the
form

(7.5)

np = ny = AT % (7.6)

The number density of charge carriers in intrinsic semiconductors, and therefore
properties like resistivity and conductivity, should vary approximately exponen-
tially with temperature.

7.3.4 Intrinsic photoabsorbers

An electron can leave a covalent bond if it is given sufficient energy (at least the
value of Eg) to jump the band gap into an anti-bonding state in the conduction
band. The required energy could be supplied by a photon, if the photon has a
wavelength less than the cutoff wavelength for the material:

hc 1.24 ym

Aif Es EileV] %

The band gap for silicon, for example, corresponds to a cutoff wavelength A of
1.1 pm,

Photo-absorption changes a material’s properties. For example, Figure 7.9a
shows a simple device that utilizes such a change to measure light intensity.
Photons absorbed by a block of semiconductor material produce ionization
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Fig. 7.9 Simple
photoconductors. In (a),
light strikes the exposed
surface of a
semiconductor linked to
a simple circuit by two
metal contacts. Photo-
ionization produces
charge carriers that
reduce semiconductor
resistance. Current
through the device will
increase with increasing
illumination, and output
is the voltage across a
load resistor. In (b), a
three-pixel device
registers three different
voltages in response to
local illumination. Here
photons pass through
upper (transparent)
contacts. The lower
contact is reflective so
that photons passing
through the device are
redirected for a second
pass.
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events — electrons in the valence band promoted to the conduction band, leaving
an equal number of holes. The greater the flux of incoming photons, the greater
the equilibrium concentration of charge carriers, and the greater the conductiv-
ity of the detector. If you maintain a constant voltage across the semiconductor,
as in the figure, then the electrical current through the circuit should increase
with the number of photons absorbed per second. A measurement of the voltage
at V,, thus monitors light intensity. Figure 7.9b shows an altemnative illumination
strategy that facilitates a close-packed array of detectors.

Notice that this photoconductor responds to the number of photons per
second absorbed, not, strictly, to the rate of energy absorbed. Of course, if
you know their spectral distribution, it is an easy matter to compute the energy
flux carried by a given number of photons.

There are at least three reasons why a photon incident on the top of the device
in Figure 7.9a will fail to generate an electron—hole pair. First, we know that
those with frequencies below the band-gap frequency, Eg/h, cannot move an
electron from the valence to conduction band, and thus cannot be detected.

A second failure is due to reflection of photons from the top surface of the
device. As we saw in Chapter 5, minimal reflection occurs at normal incidence,
and depends on the refractive index of the material:

Ceontact —5

Semiconductor

Reflective metal
contact

2

(ny — na)*

R= =
(ny + na)”

The refractive index (and thus reflectivity) for silicon and most other semi-
conductors is very high in the ultraviolet, decreases through visible wave-
lengths, and is low (3.5 to 4) in the red and infrared. Reflectivity is also low
in the X-ray band. Anti-reflection coatings can considerably reduce reflectivity
for a particular wavelength.

A third reason for detection failure is that photons above the band-gap fre-
quency might pass completely through the device without interaction. We now
examine this transmission phenomenon in greater detail.

Once entering a semiconductor, the distance a photon can travel before being
absorbed depends very strongly on its wavelength, as well as the quantum
mechanical details of available electron states in the material. If a beam of

photons enters material in the z-direction, its intensity at depth z will be

7.3 Solid-state crystals
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where I, is the intensity at z = 0, and o is the absorption coefficient. A large
absorption coefficient means light will not travel far before being absorbed.
Figure 7.10 shows the absorption coefficient as a function of wavelength for
silicon, germanium, and gallium arsenide. These curves illustrate an important
divergence in behaviors caused by the details in the available energy states in
two classes of materials. Notice that GaAs absorbs strongly right up to the cutoff
wavelength, whereas Si and Ge very gradually become more and more trans-
parent approaching that wavelength. Materials with an abrupt cutoff, like GaAs
and InSb, are called direct transition semiconductors. Materials of the second
kind, like Si and Ge, are called indirect transition semiconductors.

For both direct and indirect materials, when photons of the proper energy are
absorbed, they almost always produce electron—hole pairs. The exceptions are
usually due to flaws in the material. In some cases, a photon can interact with the
lattice (particularly defects in the lattice) and deposit its energy as a phonon, not
as a photo-ionization. For this reason, light-detecting devices require a semi-
conductor material that has been crystallized with strict controls to assure
chemical purity and lattice integrity.

7.3.5 Extrinsic semiconductors

In practical devices, crystals inevitably have some chemical impurities and
mechanical imperfections. These alter the energies and momenta of the states
available near the sites of the defects, usually in undesirable ways. Curiously,
though, some of the most useful semiconductor devices are made by intention-
ally introducing impurity atoms into the lattice.
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Fig. 7.10 The absorption
coefficient, o, measured
in m™, as a function of
photon wavelength or
energy. The absorption
depth, D = 1/a, is on the
right axis. Two indirect
transition materials,
silicon and germanium,
show a much more
gradual change with
energy than does gallium
arsenide, a direct
transition material.
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(a) Pure crystal
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Fig. 7.11 A schematic of
the bond structure in
intrinsic and extrinsic
semiconductors. In an
actual crystal, the bond
arrangement is three-
dimensional — see Figure
7.5: (a) a pure intrinsic
material; (b) three p-type
impurity atoms in an
extrinsic material; and (c)
three n-type impurity
atoms.

Matter and light

Figure 7.11a shows a flattened schematic of the positions of the atoms and
outer electrons in an intrinsic semiconductor like silicon. Each atom shares
eight valence electrons, forming four complete bonds. All atoms and bonds in
the lattice are identical. Diatomic semiconductors like GaAs have a similar
structure, except the chemical identity of the atoms alternates along rows and
columns.

Now we intentionally introduce an impurity into the lattice, as in Figure 7.11b,
where a few of the silicon atoms have been replaced by atoms that have only
three valence electrons, like boron, gallium, or indium. Each impurity creates a
vacancy in the electron structure of the lattice — a “missing” electron in the
pattern.

The crystal, in fact, will try to fill in this “missing”™ electron. The impurity
creates what is called an acceptor state. It requires relatively little encrgy (on the
order of the room temperature thermal energy, k7 to move a valence electron
from a silicon—silicon bond elsewhere in the lattice into this gap at the impurity
site. This creates a hole at the site that donates the electron. Such a hole behaves
just like a mobile hole in an intrinsic semiconductor — a positive charge carrier
that increases the conductivity of the material. Semiconductors in which impur-
ities have been added to create positive charge carriers are termed p-type extrin-
sic semiconductors.

Figure 7.12a is an energy-band diagram for a p-type semiconductor. At zero
temperature, a small number of (unoccupied) acceptor energy states exist within
the band gap of the basic material. The energy difference, E;, between the top of
the valence band and the acceptor states is typically on the order of 0.05 eV in
silicon (see Table 7.5). At a finite temperature, excitation of electrons from the
valence band into these intermediate states creates valence-band holes (Figure
7.11b). Because the electrons in the intermediate states are localized at the
impurity sites, they are immobile and cannot contribute to the conductivity.
The mobile holes in the valence band, of course, can contribute, and are termed
the majority charge carriers. In contrast with intrinsic semiconductors, np > nn
in p-type materials. Adding impurities to create an extrinsic semiconductor is
called doping, and the more heavily doped the material is, the higher is its
conductivity. The transparent conductors used as contacts in Figure 7.9b, for
example, are often made of highly doped silicon.

There is a second kind of doping. Figure 7.11¢ illustrates intrinsic material
doped with atoms that have five valence electrons, like arsenic or antimony. The
result is an n-fype extrinsic scmiconductor. Here, the “extra” electrons from the
donor impurities are casily ionized into the conduction band. This ionization
restores the bond structure to that of a diamond crystal (only eight shared outer-
shell electrons, not nine) and consequently produces conduction-band electrons
that constitute the majority carriers. Figure 7.12c shows the band structure of an
n-type material, with occupied impurity states at energy E; below the bottom of
the conduction band at zero temperature. At higher temperatures, as shown in
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Figure 7.9d, some of these donor states are ionized to add electrons to the
conduction band.

Extrinsic semiconductors respond to light in nearly the same way as intrin-
sic material. In fact, because the concentration of impurity atoms is always
quite small (typically one part in 10° or 10%), the presence of dopants does
not appreciably modify intrinsic photo-absorption above the band-gap
energy. The important difference occurs with photons whose energies
lie below the intrinsic band-gap energy but above the dopant ionization
energy, E;.

Suppose, for example, a sample of boron-doped silicon (usually symbolized
as Si:B), a p-type material, is kept so cold that the acceptor states, which lie
0.045 eV above the top of the valence band, are mostly empty. Intrinsic absorp-
tion in silicon cuts off at wavelengths longer than 1.12 pm. Short-ward of this
cutoff wavelength, our sample absorbs as if it were intrinsic silicon. However,
because photons with wavelengths shorter than 4; = hc/E; = 26 um can ionize
electrons from the valence band into the acceptor states, the number of majority
carriers in the extrinsic material will increase in proportion to the number of
photons short-ward of 26 pm. In effect, extrinsic absorption moves the cutoff
to the longer wavelength. The implication for the construction of detectors for
infrared light is obvious.

The absorption coefficient for extrinsic operation depends upon the dopant
concentration. An important difference, then, between intrinsic and extrinsic
photo-absorption is that the coefficient for extrinsic absorption can be adjusted
in the manufacturing process. However, there are limits to the amount of impur-
ity that can be added, so the absorption coefficient for extrinsic operation will
always be low. One set of limits arises because, at high concentrations, the
dopant atoms are so close together that their electron wave functions overlap,
producing an impurity band. If the states in this band are partially occupied,
then the material will be conducting — with charge carriers “hopping” from one
impurity state to another, effectively short-circuiting any photoconductive
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Fig. 7.12 Band structure
of extrinsic
semiconductors. (a) A
p-type material at zero
temperature. The energy
difference between the
top of the valance band
and the acceptor states is
typically on the order of
0.05 eV. (b) The same
material at a higher
temperature. Electrons
excited into the acceptor
states have created
valence-band holes. (c)
An n-type material at zero
temperature; (d) shows
the same material at a
higher temperature,
where electrons from the
donor states have been
ionized into the
conduction band.
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Table 7.5. lonization energies, in eV, for different impurity states in silicon
and germanium. Data from Kittel (2005} and Rieke (1994)

Acceptors Si Ge
B 0.045 0.0104
Al 0.057 0.0102
Ga 0.065 0.0108
In 0.16 0.0112
T! 0.26 0.01
Be 0.146 0.023
Cu 0.23 0.039
Donors

P 0.045 0.0120
As 0.049 0.0127
Sb 0.039 0.0096
Bi 0.069

effect. Extrinsic detectors therefore tend to be rather thick (1mm) to provide
adequate depth for photo-absorption.2

7.4 Photoconductors

Both intrinsic and extrinsic semiconductors, employed in a circuit like the one
illustrated in Figure 7.9, in principle make excellent light detectors. If the
voltage across the semiconductor is maintained as a constant (ie. if R.= 0),
then the current will be directly proportional to the number of charge carriers in
the material, which (at a sufficiently low temperature) will be directly propor-
tional only to the rate at which it absorbs photons. More precisely, the electric
current due to photons will be something like

Iphoto = anaPc

where 7 is the number of photons incident per second and g is the electron
charge. The quantity P, is the probability that an incident photon will gen-
erate a pair of charge carriers in the detector; P, depends upon the factors
discussed above: surface reflectivity, the absorption coefficient, and the thick-
ness of the sensitive layer. (The fraction of the photons entering a layer of

2 There are some important exceptions, ¢.g. the blocked impurity band (BIB) detector, also called
the impurity band conduction (IBC) detector, in which a thin layer of highly doped material is
bonded to a layer of intrinsic material, so that the intrinsic material breaks the continuity (and
conductivity) of the impurity band. See McLean (2008).

7.5 The MOS capacitor

thickness z that are absorbed is just 1 — ¢™**.) The absorption coefficient, in
turn, will depend upon wavelength and (for extrinsic materials) impurity
concentration.

The quantity P, is the probability that a charge carrier, once created, will
actually move from the semiconductor to the appropriate electrode. It depends
on a number of factors: electric field strength, thickness of the material, charge
carrier mobility, and the presence of flaws in the crystal that might promote
recombination.

Although is desirable to make Lypo as large as possible, there are limits. For
example, increasing the voltage across the electrodes increases P, but at large
potential differences electrons will gain considerable kinetic energy. At high
energies, electrons will ionize atoms by collision to create new charge carriers,
and these secondaries will in turn be accelerated to produce additional carriers.
This avalanche of charge produces a spike in the output current. At high enough
voltages, in a condition called breakdown, the avalanche becomes constant,
destroying the resistance of the material and making it useless as a detector.
Similarly, increasing the thickness, z, of the material increases the probability
that a photon will be absorbed. At the same time, however, increasing z in Figure
7.9b reduces the probability that a charge carrier will be able to move to an
electrode before it recombines.

7.5 The MOS capacitor

The metal-oxide-semiconductor (MOS) capacitor is the basic element of an
important class of astronomical detectors. Figure 7.13 illustrates the essentials
of the device, which is a three-layer sandwich. In the figure, the left-hand layer is
a block of p-type semiconductor. The left-hand face of this block is connected to
clectrical ground. A thin layer of insulator forms the middle of the sandwich.
The semiconductor is usually doped silicon, and the insulator layer is usually
silicon dioxide. The right-hand layer is a thin coating of metal, which is held ata
positive voltage. If the insulating layer is not made of SiO, (silicon nitride,

P —Ty.pe Oxide insulator
semiconductor
- Metallic
s - | contact
/ B
; 14
/ <
|
\
— \
= Depletion
region ~

219

Fig. 7.13 Cross-sectional
view of the physical
structure of a MOS
capacitor. Positive
voltage (usually a few
volts) applied to the
metal layer creates a
depletion region in the
semiconductor.
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Fig. 7.14 An energy-band;
diagram for the MOS
capacitor. Majority
carriers are swept out of
the depletion region.
Minority carriers are
swept towards the
boundary with the
insulator.
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Si3Ny, is the usual alternative), then the device is called an MIS (metal-
insulator-semiconductor) capacitor.

Figure 7.14 shows the band structure of the device. The positive voltage of
the metal layer distorts the energies of the bottom and top of the semiconductor
forbidden gap. The tilt of the band reflects the strength of the electric field. In the
diagram, the electric field forces electrons to move to the right and holes to the
left. If a hole loses energy, it moves upwards in the diagram.

The large band gap in the insulator prevents minority electrons from crossing
into the oxide layer. The flow of majority holes to ground in the valence band, in
contrast, is not impeded. The result is that, in equilibrium, a depletion region
devoid of the majority charge carriers develops in the semiconductor adjacent to
the insulator. The minority carriers here are immobile — trapped in the potential
well formed by the bottom of the semiconductor valence band and the band gap
of the insulator.

The MOS capacitor is especially useful because it will sfore electrons that are
generated by ionization. Referring to Figure 7.15a, it is clear that if an electron—
hole pair is created in the depletion region, the pair will be swept apart before
they can recombine: the electron goes into the well, and the hole leaves the
material. Electrons in the well remain there indefinitely, since they sit in a region
depleted of holes. Ionizations outside the depletion zone are less likely to
produce stored electrons since charges there move by diffusion, and the longer
it takes for the electron to reach the depletion zone, the greater are its chances of
encountering a hole and recombining.

For ionizations in the depletion zone, however, charge storage can be nearly
100% efficient. Eventually, if enough electrons accumulate in the zone, they
will neutralize the effect of the positive voltage and remove the potential well
for newly generated electrons. Figure 7.15b illustrates this saturated situation.
Saturation destroys the depletion zone and allows generated charge carriers to

move only by diffusion, eventually recombining in equilibrium just as in an
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ordinary semiconductor. Newly created electrons are no longer stored. The
capacitor has exceeded its full-well capacity.

Short of saturation, the MOS capacitor is a conceptually simple detector
of light. For every photon below the cutoff wavelength absorbed in the semi-
conductor layer, the device stores something like one electron. Making
a photometric measurement then consists of simply counting these electrons.
For an astronomer, this is a wonderful characteristic. It means that a very
weak source can be detected by simply exposing the capacitor to light from
the source for a time long enough to accumulate a significant number of
electrons.

7.6 The p—n junction

A very significant situation arises if a p-type material and an n-type material are
brought into contact. Junctions of this sort are the basis for many solid-state
electronic devices and for some astronomical detectors. Figure 7.16 illustrates
the behavior of charge carriers at a p—n junction. In the figure, we imagine that a
block of n-type material has just been brought into contact with a block of p-type
material.

Figure 7.16a shows the non-equilibrium situation immediately after con-
tact. The majority charge carriers start to flow across the junction. Electrons in
the n-side conduction band will move across the junction and drop down in
energy to fill the available acceptor states on the p side (broken lines). Like-
wise, mobile holes in the valence band of the p-type material will move acrass
the junction to neutralize any electrons in donor states in the n-type material.
Opposite charges build up in the doping sites on either side of the junction —
excess negative charge on the p side, excess positive charge on the n side.
Electrostatic repulsion eventually halts further transfer of carriers across the
Jjunction.
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Fig. 7.15 (a) The
movement of charge
carriers created by
ionization in the
semiconductor layer of
an MOS capacitor.
Conduction-band
electrons will move into
the potential well, while
valence-band holes move
out of the material to
ground. There is a net
increase in the negative
charge in the
semiconductor layer.

(b) In a saturated device,
there is no longer a
potential gradient in the
semiconductor, so
recombination and
ionization will be in
equilibrium, and there
will be no further gain in
net negative charge.
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Fig. 7.16 The p-n
junction; (a) shows the
flow of charge carriers
immediately after contact
between the two regions.
Majority carriers (n-side
electrons and p-side
holes) recombine, fill
acceptor sites, and ionize
donor sites. The band
structure in equilibrium is
shown in (b). The
accumulation of charges
near the junction creates
a built-in field, which
alters the energy levels of
available states so that
the Fermi energy is the
same everywhere in the
crystal.
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7.6.1 Generation and recombination

Figure 7.16b shows the situation once equilibrium is established. As in the
MOS capacitor, a depletion region, constantly swept clear of mobile charge
carriers, has formed in the volume surrounding the junction. The lack of charge
carriers means this region should have very high electrical resistance. In equili-
brium, the energy of the bottom of the conduction band and the top of the valence
band changes across the depletion region — it requires work to move an electron
from the n region to the p region against the electrostatic force. The potential
difference across the depletion zone, Ey, is just sufficient to bring the Fermi
energy to the same level throughout the crystal. In equilibrium, charges do move
through the depletion region, but the two electric currents here cancel:

L= —1

The first current, the recombination current, I, is due to the majority carriers
that are able to overcome the potential barrier, cross the depletion region, and
undergo recombination. This I is a positive current that flows from p to n; it has
two components: one caused by n-side electrons, the other by p-side holes.
Figure 7.17 illustrates the flow of the recombination current, whose magnitude
will depend on the size of the barrier and on the temperature.

The second current, I,, the generation current, is due to minority carriers and
flows in the opposite direction (from n to p). The minority carriers are thermally
ionized conduction-band electrons on the p side and valence-band holes on the n
side, which diffuse away from their creation sites. If such a carrier reaches the
depletion region, it will be swept across. Diffusion speed outside the depletion
region depends on the temperature and the impurity concentration, but is (to first
order) independent of Ey,. Thus, I, depends on temperature, but in contrast to /; is
virtually independent of the size of Ej.

7.6.2 p—n Junction diodes

The different behaviors of the two currents mean that the p—n junction
can function as a diede: it will carry (positive) current in the direction
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p to n, but not in the reverse direction. Figure 7.18 illustrates the basic
process.

In the condition known as forward bias, a positive voltage connected to the p
side of the junction reduces the size of the potential barrier Ey. The recombi-
nation current, I, will flow more strongly. (That is, more electrons will have
energies greater than the barrier, and can move from n to p.) The size of this
current will depend in a non-linear fashion on the size of the applied voltage,
V.. The applied voltage, however, does not affect the generation current in the
opposite direction, J,, due to minority carriers. The relatively poor conductivity
of the depletion region guarantees that almost all of the potential drop will occur
here, and the applied voltage will have little influence on the diffusion rate
outside the depletion region. Thus, in the forward bias case, I, > — I, and
current flows from p to n.

A negative voltage connected to the p side of the junction — a condition
known as reverse bias — increases the size of the potential barrier Ey,. This
chokes off the flow of majority carriers and lowers I, from its equilibrium value.
Again, the minority carrier current, I, remains little changed, so the result of the
reverse bias circuit is a very small current in the direction n to p. Boltzmann’s
law and the above arguments suggests a diode equation that gives the voltage—
current relationship for an “ideal” diode:

hota, = & + 1y =1 (e%‘" - 1) (7.8)

Here, g is the electron charge, and current and voltage are assumed to be
positive in the p to n direction. You can verify that this formula corresponds to
the behavior seen in an actual diode illustrated in Figure 7.19. The formula does
not describe the phenomenon of diode breakdown at large reverse biases.

7.6.3 Light detection in diodes

Figure 7.20 shows the result of photo-absorption in a p—n diode. Each absorption
of a photon causes an ionization and the creation of a conduction electron and
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Fig. 7.17 Recombination
{a) and generation (b)
currents at a p—n junction.
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Fig. 7.18 Biased diodes:
{a) forward bias reduces
the size of the barrier, so
the recombination current
increases; (b) reverse bias
increases the barrier and
decreases the
recombination current. In
both cases, the generation
current remains
unchanged.
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Fig. 7.19 The
current-voltage relation
for an ideal p—n diode.
The solid line is the
relation given by
Equation (6.8). The
dotted line shows the
phenomena of
breakdown in real
diodes, which become
conducting at very
negative external
voltages.

Fig. 7.20 Photo-
absorption in a p-n
junction diode.
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valence hole. This adds a new contribution to the generation current, this one
dependant on ¢, the number of photons that enter the detector per second. The
inclusion of a photocurrent modifies Equation (7.8):

IotaL = Ln + L+ Ig = —qon + 1, (e"‘yﬁ"A - 1) (7.9)

Here # is a factor that depends on the fraction of incident photons absorbed as
well as the probability that a generated charge carrier will cross the junction
before recombining. Note that charge pairs created in the n or p material must
move by diffusion to the junction, as discussed above, and have a finite prob-
ability of recombining before crossing the junction. Electron-hole pairs created
in the depletion zone, on the other hand, are immediately swept apart by the
strong electric field there, and have little chance of recombining. Majority
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carriers will thus tend to accumulate on either side of the depletion zone, and the
junction will behave like a charge storage capacitor if an external circuit does
not remove the carriers.

There are different strategies for employing the light sensitivity of a photo-
diode. Figure 7.21 is a plot of Equation (7.9) for three different light levels, as
well as three different modes of operation: (a) In the photo-conductor mode, a
battery holds the external voltage to a constant value, and the current is a linear
function of the incident photon flux. (b) In the power-cell mode, the diode is
connected to a constant-load resistance, and the power output depends on
the incident photon flux. This is the principle of operation for solar power cells.
(c) In the photovoltaic mode, current from the diode is held at zero (making it a
storage capacitor by connecting it to a very high impedance voltmeter, for
example), and the voltage across it is a non-linear function of the photon flux.

7.6.4 Variations on the junction diode

Some modifications of the simple p—n junction can improve the device’s
response to light. Several are important in astronomy.

The PIN diode sandwiches a thin layer of intrinsic (undoped) silicon between
the p material and the n material of the junction. This increases the physical size
of the depletion zone, and the resulting p—intrinsic—n (PIN) diode has larger
photosensitive volume, higher breakdown voltage, lower capacitance, and better
time response than the simple p—n device.

The avalanche photodiode is both a physical modification and a mode of
operation. Consider a photodiode (a modified PIN type) that is strongly back-
biased at close to its breakdown voltage. Because of the large voltage drop
across the intrinsic region, charge carriers created by photo-absorption will
accelerate to high kinetic energies — high enough to produce impact ionization
of additional charge carriers. These secondaries will in turn accelerate to
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Fig. 7.21 Current-voltage
relations for a
photodiode at three
different levels of
incident photon flux.
Heavy lines show
electrical properties as a
function of photon
intensity for three
different modes of
operation.
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Fig. 7.22 A Schottky
photodiode. The upper
diagram shows a cross-
section of the material
structure, and the lower
shows the energy bands.
Photo-ionized holes
produced in the metal
move upward in the
diagram, and will be
detected if they
overcome the potential
barrier between metal
and semiconductor. The
reflector sends photons
back to the PtSi layer for a
second pass.
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produce further ionizations. The resulting avalanche of carriers constitutes a
current pulse that is easy to detect. At low levels of illumination, counting the
pulses is equivalent to counting photons. At higher illuminations, the pulses are
too close together to count, but the resulting current, although noisy, is very
large and therefore easy to detect.

The Schottky photodiode is especially useful as a detector in the near-
and mid-infrared. Figure 7.22 shows a junction between a metal and p-type
silicon as well as the corresponding electron energy bands. At the junction,
electrons will spontaneously flow from the metal to neutralize majority holes
in the semiconductor until the Fermi levels in the two materials match. The
resulting charge transfer sets up a potential barrier at the junction, as well as
a depleted zone on the semiconductor side. Light detection occurs because
holes created by photo-absorption in the metal layer, if tnergetic enough,
will move across the potential barrier into the depleted region, where they
will be swept out into the semiconductor (remember, our band diagrams show
energies for electrons, so holes will move upwards in the diagram). The
barrier height for holes, Ens, determines the long-wavelength cutoff of the
diode; Eps depends on the metal used. Common choices are all metallic
silicides, which form easily when a very thin metallic layer is deposited on
silicon by evaporation. The most useful is PtSi, with Eps =0.22 eV, and A, =5.6.
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Photo-ionized hole flowing
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7.7 The vacuum photoelectric effect

Schottky diodes have relatively low efficiencies, but they also have several
virtues: they are very easy to manufacture and mate to read-out electronics.
They also tend to have uniform responses and therefore are a good choice for the
elements in an array. Their sensitivities extend into the infrared, where intrinsic
silicon is useless.

7.7 The vacuum photoelectric effect

The vacuum photoelectric effect depends on the ejection of electrons from the
surface of a solid, and has important applications in astronomical detectors.
Figure 7.23 illustrates the effect, which is simplest in metals. A thin slab of
the metal cesium occupies the left side of the figure, which shows the band
structure. We use cesium as an example because it has a relatively loose hold on
its surface electrons. The surface of the metal runs vertically down the center. If
the potential energy of an electron at rest well away from the metal is zero, then
the work function, W, of the material is the difference between this free electron
energy and the Fermi energy of the solid. In the case of cesium, the work
function is 2.13 eV.

We would like to use the energy of one photon to move one electron from the
metal to the vacuum. This operation has two requirements: the electron must be
given a positive energy, and it must be located at the surface. In general, the
absorption of a photon with energy hv > W will take place in the interior of the
metal, and will promote an electron there into the conduction band. This elec-
tron might have positive energy. If, after diffusing to the surface, the electron
still has both positive energy and an outward-directed momentum (case B in the
figure) it can move into the vacuum.

A simple device called a photocell (or more properly, a vacuum photodiode),
illustrated in Figure 7.24, uses this effect to measure the intensity of light. In the
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Fig. 7.23 The vacuum
photoelectric effect in a
metal. Photoelectron B
reaches the vacuum with
positive energy, while
photoelectron A does
not. Both photoelectrons
make collisions with the
lattice, and execute a
random walk to the
surface. Photoelectrons
gradually become
thermalized - if the metal
is cold, they tend to lose
energy on each lattice
collision.
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Fig. 7.24 A vacuum
photodiode. A photon
with sufficient energy to
eject an electron strikes
the photocathode. The
photoelectron then
accelerates to the anode
and flows through the
load resistance to
ground.
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diagram, two conductors are sealed in an evacuated cell wiéli a transparent
window. One conductor, the photocathode, is made from some material (e.g.
cesium) that exhibits an efficient vacuum photoelectric effect. The photocathode
is held at a negative voltage. The other conductor, the anode, is connected
through a load resistor to the ground as illustrated. Illumination of the photo-
cathode ejects electrons into the vacuum. These accelerate to the anode. The
result is an output current and voltage across the resistor that is proportional to
the photon arrival rate at the cathode.

Metals actually make rather poor photocathodes. For one thing, they exhibit
large work functions. (Cesium, the metal with one of the smallest values for %,
will only detect photons with wavelengths shorter than 580 nm.) A second, even
more serious, disadvantage is that metals are highly reflective. Semiconductors
usually make better photocathodes since they are much less reflective. The
photoelectric effect is slightly more complex in a semiconductor, as illustrated
by the band diagram in Figure 7.25a. The zero of energy and the work function
are defined as in a metal, and a new variable, the electron affinity, X, is defined
as the difference between the zero point and the energy at the bottom of the
conduction band. For a simple semiconductor, as in Figure 7.25a, the electron
affinity is a positive number. Since there are no electrons at the Fermi level in a
semiconductor, the energy required to eject an electron is

hVZE(;‘i‘X

This can be relaxed by creating a p—n junction near the emitting surface.
In Figure 7.25b, the displacement of the energy of the bottom of the conduction
band in the n material near the surface means that a photon with energy
greater than just Eg can cause electron emission if it is absorbed in the p-type
material. In this case, the effective electron affinity of the p-type material is a
negative number. The n-type layer is so thin and transparent that its more
stringent energy requirements are not a serious detriment to the cathode’s sen-
sitivity to long wavelengths. Materials of this type, termed NEA photocathodes
(negative electron affinity), are usually fabricated with a III-V semiconductor as
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the p-type material and oxidized cesium as the n-type material. For example, an
NEA photocathode made from p-doped gallium arsenide (Eg = 1.4 eV) with a
surface layer of n-doped Cs,O (Eg = 2.0 eV, x = 0.6 €V) is sensitive out to
880 nm and has been important for some astronomical applications.

We have assumed that emitted photoelectrons will leave from the surface that
is illuminated. This need not be the case, and many photocathodes are semi-
transparent: photons enter on one side and electrons emerge from the opposite
side.

7.8 Superconductivity

Superconducting material has an electrical conductivity that falls to zero at and
below a critical transition temperature, 7. The simplest superconductors, and the
first investigated, are all metallic elements with very low critical temperatures
(T, < 10 K). These are called type I superconductors. More complex materials
(alloys, ceramics, and various exotic compounds) may have higher transition
temperatures. Currently (2010), the highest claimed 7. is 242 K.

Type I superconductors are the basis of some potentially important light
detectors in astronomy, so we briefly describe their behavior here. The website
superconductors.org or the modern physics text by Harris (1998) gives a more
complete introduction, and chapter 10 of Kittel (2005) provides a more
advanced treatment, as does Blundell (2009).

7.8.1 The superconductor band gap

Above the critical temperature in a superconducting metal like lead, the Fermi—
Dirac formula describes the energy distribution of the valence electrons in the
conduction band. At T, (7.19 K for lead) a lattice-mediated force between
electrons makes new energy states available below the Fermi level — two
spatially separated electrons can form a Cooper pair of exactly canceling

229

Fig. 7.25 The vacuum
photoelectric effect in
semiconductors
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Fig. 7.26 Energy bands in
a superconductor. The
band-gap energy is the
energy required to break
apart two electrons
bound in a Cooper pair,
placing them in an
excited quasiparticle
state (dotted arrow). The
density of states just
below and just above the
band gap is very high,
although there are no
states in the gap itself.
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momenta and spins. Each pair has a binding energy well below the thermal
energy of the lattice and, with zero spin, behaves in many ways like a boson —
the Pauli exclusion principle does not apply to these states, and all pairs have the
same momentum (zero, when there is no current). It is the Cooper pair states that
are responsible for superconductivity and many resultant behaviors — including
perpetual electric currents and magnetic levitation.

Our concern, however, is the manner in which a superconductor interacts with
light. Figure 7.26 shows the special energy-band diagram for a superconductor.
At temperatures below T, an unlimited number of superconducting states exist at
an energy A below the Fermi level. Single electrons will therefore occupy only
states of energy (Er — A) or lower. The value of A is a strong function of
temperature, rising from zero at 7, to a maximum value of A, at temperatures
below about 0.3 7. The value for A,,, which measures the binding energy per
electron of a Cooper pair, is tiny, 1.4 X 10™ ? eV for lead, which is typical.

Consider what must happen for a superconductor to absorb a photon: only if
the photon has energy larger than 2A can it break apart a Cooper pair and
promote the two electrons to higher energies. Lower energy photons will not
be absorbed: the material has an effective band gap of magnitude 2A, as shown
in Figure 7.26. The electrons promoted to the excited states in the “conduction”
band in the superconductor have quantum characteristics that differ from ener-
getic electrons in an ordinary metal, and are therefore termed quasiparticles. For
example, the number of states available to quasiparticles at energies just above
the gap is very large. Table 7.6 lists the gap energies and transition temperatures
of a few superconductors that have been useful in astronomical detectors.

7.8.2 Light detection in an SIS junction

Two superconductors separated by a thin layer of insulator (SIS = supercon-
ductor—insulator—superconductor) constitute a Josephson junction if the insu-
lator is thin enough (around 1 nm) to permit quantum-mechanical tunneling.

7.8 Superconductivity

Table 7.6. Some type | superconductor characteristics. Data from Kittel
(2005}
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Figure 7.27 shows such a junction arranged as a light-detecting diode: a positive
bias voltage less than 2A/q is applied to the right-hand superconductor, and a
magnetic field is applied parallel to the junction. If the junction is very cold, all
excited states are empty. In a normal Josephson junction it would be possible for
the Cooper pairs to tunnel from left to right, but the magnetic field suppresses
that current, so the diode does not conduct.

If the left-hand superconductor absorbs a single visible light photon of wave-
length A (energy hc/A), it receives enough energy to break apart multiple Cooper
pairs, promoting a maximum of hc/AA electrons into excited states. These
quasiparticles can tunnel across the insulator, and those that do produce a
current pulse whose total charge is inversely proportional to the wavelength
of the exciting photon.

Devices of this kind, called superconducting tunnel junctions (STJs),
operated with sufficient time resolution, can count individual incoming photons
and determine the wavelength (from X-ray to near infrared) of each. The uncer-
tainty of the wavelength determination depends on the wavelength. Although
still very much in the development stages, a few experimental but practical
multi-pixel STJ-based detectors have begun to appear at telescopes. See chap-
ter 4 of Rieke (2003) and the references by Peacock et al. (1997) and Verhoeve
et al. (2004).
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Fig. 7.27 An STJ diode.
(a) A cross-section of the
physical device. In most
practical detectors the
three layers and their
contacts are deposited as
films on a transparent
substrate, so a more
accurate diagram would
extend vertically several
page heights. The band
structure is shown in (b) .
Not shown is the
possibility that
quasiparticles on the
right can tunnel back to
the left to break apart
additional pairs.
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Superconducting tunnel junctions promise to be the near-ideal astronomical
detector: They can be fashioned into an array that produces an image yielding
both spectroscopic information and high time resolution. Especially because
they must operate at milli-kelvin temperatures, there are formidable engineering
issues in developing them as practical and affordable astronomical tools, but
there is no doubt about their superiority as detectors.

e The MOS capacitor is a block of extrinsic semiconductor separated from a metal
electrode by a thin layer of insulation. With the proper voltage across the insulator,
the device can store charges produced by photo-absorptions. Concepts:

Si0, depletion region potential well
Sfull-well capacity saturation

e The p—n junction produces a depletion region where photo-absorptions can generate

charge carriers and an electric current. Concepts:

Summary p— junction recombination current  generation current

e Quantum mechanics accounts for a guantized pattem of permitted states for the diode forward bias reverse (back) bias
energies, angular momenta, magnetic interactions, and spins of electrons bound to breakdown diode equation p-n photodiode
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and thus produce an electric current in a vacuum.

o The outer (optical) electrons of an atom gain or lose energy by making transitions photocathode vacuum photodiode anode
between permitted states. Concept: electron affinity NEA photocathode
excitation photo-emission photo-ionization
ground state photo-absorption absorption edge e A superconducting junction diode produces a number of conduction-band elec-
thermal excitation Boltzmann distribution trons that is proportional to the energy of the incoming photon. An SID in pulse-

counting mode can therefore measure both the intensity and the wavelength
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e The energy states for electrons in solid-state crystals typicaily arrange themselves

in continuous bands separated by forbidden band gaps. Concepts:
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antibonding state valence band conduction band 1. Using the nl* notation, write down the electron configuration for the ground state,
N holes semiconductor intrinsic semiconductor first excited state, and third excited state of iron (atomic number 26) as suggested

electron degeneracy phonon Fermi—Dirac statistics by Table 7.2.

Fermi energy band-gap energy cutoff wavelength 2. There are several exceptions to the configuration-filling scheme presented in Table

e Adding small quantities of a selected impurity can produce desirable properties in 7.2. The configuration of the ground state of copper is an example. Look up a table of

a semiconductor. Concepts: electron configurations in atoms and find at least five other examples.

3. Suppose a certain diatomic molecule has an energy-level diagram similar to Figure

dopant extrinsic semiconductor donor atom
acceptor atom p-type n-type 7.3 and consider only transitions within the A = 0 states. Suppose that relative to the
impurity band ground state, state (/= 1, v = 0) has an energy of 1 eV. Suppose also that, no.matter
what the rotational state is, the relative energies of the lowest vibrational states are
e Photoconductors absorb a photon and create an electron-hole pair, thereby wv + Nd, whered =10~ 5 eV and v is the vibrational quantum number. (a) Compute
increasing the electrical conductivity of the material. Concepts: the wavelengths of all permitted emission lines arising between levels J=0and /=1,
absorption coefficient  breakdown absorption depth and involving vibrational states v =0, 1, 2, 3, 4. The only permitted transitions are the

ones in which Av = = 1. (b) Skeich the emission spectrum for these lines.
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4. Compute the relative probability of finding an electron at the bottom of the conduction
band relative to the probability of finding an electron at the top of the valence band in
a silicon crystal at a temperature of (a) 3 K and (b) 300 K. Use Fermi—Dirac statistics.
Compare your answer with the one given by the Boltzmann equation.

5. Compute the fraction of incident photons absorbed by a 100-pum-thick layer of bare
silicon if the photons have wavelength (2) 500 nm and (b) 800 nm. Assume the index
of refraction of silicon is 4.4 at 500 nm and 3.8 at 800 nm.

6. How does an MOS capacitor made of an n-type semiconductor work? Why do you
think p-type material is usually preferred for these devices?

7. Derive a relationship between the full-well capacity of an MOS capacitor and the
maximum possible relative precision that the device can produce in a brightness
measurement. What is the risk in planning to achieve this precision, with a single
measurement? &

8. Assume you have a meter that measures electric current with an uncertainty (noise)
of 100 picoamps. (One picoamp = 102 amp = 10 "2 coulomb s *). You employ your
meter with a photodiode in a circuit like the one in Figure 7.18a. You have a 2-meter
telescope at your disposal, and use a filter to limit the light received to those wave-
lengths at which the detector is most sensitive. Compute the magnitude of the faintest
star you can detect with this system. “Detect” in this case means the signal-to-noise
ratio is greater than 3. Assume the photon flux from a zero-magnitude star in the
bandpass you are observing is 10'® photons m > s~". Your photodiode detects 45% of
the photons incident, and you may ignore any background signal.

9. In response to an incoming photon, a niobium-based STJ diode detects a pulse of 500
electrons. Assume tunneling operates with 100% efficiency, and the only source of
noise is counting statistics. (a) Compute the energy of the incoming photon and its
uncertainty. (b) What is the wavelength of the photon and its uncertainty? (c) Com-
pute the spectroscopic resolution (R = 84/4) of this device as a function of wave-
length. (d) Find the equivalent expression for a device in which the superconductor is
hafnium instead of niobium.

Chapter 8
Detectors

Honestly, [ cannot congratulate you upon it. Detection is, or ought to be, an exact
science, and should be treated in the same cold and unemotional manner. You
have attempted to tinge it with romanticism, which produces much the same
effect as if you worked a love-story or an elopement into the fifth proposition of
Euclid.

“But romance was there,” I remonstrated.
— Arthur Conan Doyle, The Sign of the Four, 1890

Astronomical detection, even more than the work of Sherlock Holmes, is an
exact science. Watson, though, has an equally important point: no astronomer,
not even the coldest and most unemotional, is immune to that pleasant, even
romantic, thrill that comes when the detector does work, and the Universe does
seem to be speaking.

An astronomical detector receives photons from a source and produces a
corresponding signal. The signal characterizes the incoming photons: it may
measure their rate of arrival, their energy distribution, or perhaps their wave
phase or polarization. Although detecting the signal may be an exact science, its
characterization of the source is rarely exact. Photons never pass directly from
source to detector without some mediation. They traverse both space and the
Earth’s atmosphere, and in both places emissions and absorptions may modify
the photon stream. A telescope and other elements of the observing system, like
correcting lenses, mirrors, filters, optical fibers, and spectrograph gratings, col-
lect and direct the photons, but also alter them. Only in the end does the detector
do its work. Figure 8.1 illustrates this two-stage process of signal generation:
background, atmosphere, telescope, and instruments first modify light from the
source; then a detector detects.

An astronomer must understand both mediation and detection if she is to
extract meaning from measurement. This chapter describes only the second step
in the measurement process, detection. We first outline the qualities an astron-
omer will generally find important in any detector. Then we examine a few
important detectors in detail: the CCD, a few photo-emissive devices, the infrared
array, and the bolometer.
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Fig. 8.1 Mediation and
detection of a light signal
(IGM = intergalactic
medium, ISM =
interstellar medium). The
detection step may fail to
record some of the
mediated signal, and
may introduce additional
noise to the part of the
signal that is recorded.
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8.1 Detector characterization ¥

Why does an astronomer choose one detector instead of another? Why
did optical astronomers in the 1980s largely abandon photography, the then-
dominant detector for imaging, in favor of solid-state arrays? Why are these
same arrays useless for other purposes, such as measuring very rapid changes in
brightness? Is there a perfect detector? We begin an answer with a list of several
critical characteristics of any detector.

8.1.1 Detection modes

We can distinguish three distinct modes for detecting light.

Photon detectors produce a signal that depends on an individual photon
altering the quantum-mechanical state of one or more detector electrons.
For example, in the last chapter, we saw how a change in electron energy in
a photoconductor or photodiode can produce a change in the macroscopic
electrical properties like conductivity, voltage, or current. Other changes in
quantum state might produce chemical reactions (as in photography) or a pulse
of free electrons, as in vacuum photomultipliers. Photon detectors are partic-
ularly suited to shorter wavelengths (infrared and shorter), where the energies
of individual photons are large compared to the thermal energies of the elec-
trons in the detector.

Thermal detectors absorb the energy of the incoming photon stream and
convert it into heat. In these devices the signal is the temperature change in
the body of the detector. Although thermal detectors are in principle useful at all
wavelengths, in practice, thermal detectors, especially a class called bolometers,
have been fundamentally important in the infrared and microwave regions, as
well as very useful in the gamma and X-ray regions.

Wave detectors produce signals in response to the oscillating electric
or magnetic field of the incoming electromagnetic waves, usually by measuring
the interference effect the incoming fields have on a wave produced by 2
local oscillator. In principle, these detectors, unlike photon and thermal
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detectors, can gauge the phase, intensity, and polarization of the detected wave.
Wave detectors are especially useful in the radio and microwave parts of the
spectrum.

8.1.2 Efficiency and yield

Thou shalt not waste photons.
— Anonymous, c. 1980

A good detector is efficient. We construct costly telescopes to gather as many
photons as possible, and it seems perverse if a detector does not use a large
fraction of these expensive photons to construct its signal.

Photography, for example, is relatively inefficient. The photographic detector,
the emulsion, consists of a large number of tiny crystals, or grains, of silver
halide (usually AgBr) suspended in a transparent gelatin matrix. Photons can
interact with a grain to eventually turn the entire grain into elemental silver. The
more silver grains present in the emulsion after it has been processed, the
stronger is the signal.

Why is the process inefficient? Some photons reflect from the surface of the
emulsion and are not detected. Some pass right through the emulsion, while
others are absorbed in its inactive parts without contributing to the signal.
Nevertheless, silver halide grains absorb something like 40-90% of the incident
photons. These absorbed photons produce photoelectrons that can induce a
chemical change by reducing a silver ion to a neutral atom. The corresponding
neutral bromine atom (the hole produced by photo-absorption) can vanish,
either combining with the gelatin or with another bromine to form a molecule
that escapes the crystal. Most holes do not vanish, however, and most photo-
electrons recombine with holes before they can neutralize a silver ion. Some
neutral silver atoms are created, but most are re-ionized by holes before the
grain can be developed. Finally, it is only after three to six silver atoms drift and
clump together at a spot on the grain that the crystal becomes developable. In the
end, very few of the incident photons actually have an effect in photography.
The process is inefficient.

The quantum efficiency, QE, is a common measure of detector efficiency. It
is usually defined as the fraction of photons incident on the detector that actually
contribute to the signal.

_ Naereat N
QE = T (8.1)

In a perfect detector, every incident photon would be absorbed in a fashion that
contributed equally to the signal, and the detector would have a QE of 100%.
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Photographic emulsions have QE valuess in the range 0.5-5%." Solid-state
devices — like silicon photodiodes, superconducting tunnel junction (STJ) diodes,
or metal-oxide-semiconductor (MOS) capacitors — have QE values in the 20%—
95% range. Astronomers prefer these devices, in part, because of their high
quantum efficiencies.

The quantum efficiency of a particular device is not always easy to measure,
since (as in photography) the chain of events from incident photon to detection
may be difficult to describe and quantify. Absorptive quantum efficiency is
physically more straightforward, but somewhat less informative. It is defined
as the photon flux absorbed in the detector divided by the total flux incident on
its surface:

Nabs
Ni

Because absorbed photons are not necessarily detected, QE < 7.

The quantum yield of a photon detector is the number of detection “events”
per incident photon. For example, in silicon photoconductors, the detection
event is the production of an electron—hole pair. If an incident photon has energy
less than about 5eV, it can produce at most one electron—hole pair, so the
quantum yield is 1. For higher energy photons, a larger number of pairs are
produced, around one e-h pair per 3.65 eV of photon energy. What happens in
detail is that the first electron produced has so much kinetic energy that it can
collide with the lattice to produce phonons that generate additional pairs. A
10-angstrom X-ray, therefore, will yield (on average) 34 photoelectrons. An
STJ-based detector, you will recall, is particularly attractive because of its very
large, wavelength-sensitive quantum yield.

8.1.3 Noise

There are two kinds of light — the glow that illuminates, and the glare
that obscures.
— James Thurber (1894-1961)

Although efficiency in a detector is important, what really matters in evaluating
a measurement is its uncertainty. The uncertainty in the output signal produced
by a detector is often called the noise, and we are familiar with the use of the
signal-to-noise ratio, SNR, as an indication of the quality of a measurement. It

! Quantum efficiency is a bit of a slippery concept in photography. For example, once a grain has
formed a stable clump of three—six silver atoms, absorbed photons can make no further contri-
bution to the signal, even though they create additional silver atoms. The entire grain is either
developed or not developed depending only on the presence or absence of the minimum number of
atoms. In photography, QE is thus a strong function of signal level —the highest efficiencies only
apply if the density of developed grains is relatively low.

8.1 Detector characterization

would seem that a perfect detector would produce a signal with zero noise. Thig
is not the case.

You will recall that there is an uncertainly inherent in measuring the strength
of any incident light ray. For a photon-counting device, this uncertainty arises
from the Poisson statistics? of photon arrivals, and is just

c=vVN

where N is the number of photons actually counted. A perfect detector, with
QE = 1, faithfully counts all incident photons and will therefore produce
(SNR)pcrfccl = 0_— = — = VN
Real detectors will differ from this perfect detector by either counting fewer
photons (reducing the output noise, but also reducing both the output signal
and the output SNR) or by exhibiting additional noise sources (also reducing
the SNR). The detective quantum efficiency (DQE) describes this departure
of a real detector from perfection. If a detector is given an input of Vi, photons
and has an output with signal-to-noise ratio (SNR)_,, then the DQE is defined
as a ratio:
(SNR)g _ Now

DQE = ——2 = (8.2)
(SNR)jerioq Mo

Here N, is a fictitious number of photons, the number that a perfect detector
would have to count to produce a signal-to-noise ratio equal to (SNR)_ ;. The
DQE gives a much better indication of the quality of a detector than does the raw
QE, since it measures how much a particular detector degrades the information
content of the incoming stream of photons. For a perfect detector, DQE = QE = 1.
For any detector, it should be clear from Equation (8.2) that DQE < QE. If two
detectors are identical in all other characteristics, then you should choose the
detector with the higher DQE. If a parameter (wavelength of the observation, for
example) affects both the input signal and the DQE, then you should choose a
value that maximizes the value

(Signal),,/(DQE) = (SNR),,,

Returning to the example of the photographic emulsion, the noise in an image
is experienced as granularity: the microscopic structure of, say, a star image
consists in an integral number of developed grains. Statistically, counting grains
in an image is a Poisson process, and has an uncertainty and a SNR of / Nesiins-

2 Although we have been treating the photon-counting process as if it were perfectly described by
Poisson statistics, both theory and experiment show this is not the case. Photon arrivals are not
statistically independent — real photons tend to clump together slightly more than Poisson would
predict. This makes little practical difference in the computation of uncertainties.
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Since it takes something like 1020 absorbed photons to produce one developed
grain, the photographic process clearly degrades SNR. In addition, grains are not
uniformly distributed in the emulsion, and some grains not activated by photons
will nevertheless get developed to produce a background “fog.” Both of these
effects contribute noise, and thus reduce the DQE. A typical emulsion might
have # = 0.5, QE = 0.04 and DQE = 0.02. Many solid-state detectors do not
degrade the information in the input to anything like the degree that photography
does, and their DQE values are close to their QE values — in the range 20-90%,

The DQE generally is a function of the input level. Suppose, for example, a
certain QE = 1 detector produces a background level of 100 electrons per
second. You observe two sources. The first is bright. You observe it for |
second, long enough to collect 10,000 photoelectrons (so SNR;, = 100). For
this first source, SNR,, = 10,000/+/(10, 100 + 10?) 4198, and DQE = 0.96.
The second source is 100 times fainter. You observe it for 100 seconds, and
also collect 10,000 photoelectrons. For the second source, SNRy =
10, 000/+/20,000 + 10,000 = 57.8, and DQE = 0.33.

8.1.4 Spectral response and discrimination

The QE of a detector is generally a function of the wavelength of the input
photons. Some wonderful detectors are useless or have low QE at some wave-
lengths. Silicon devices, for example, cannot respond to photons with 4 > 1.1 pm
since these photons have energies below the silicon band-gap energy. The pre-
cise relationship between efficiency and wavelength for a particular detector is
an essential characteristic.

One can imagine an ideal detector that measures both the intensity and the
wavelength distribution of the incoming beam. An STJ diode, operated in a
pulse-counting mode, for example, discriminates among photons of different
wavelength.

8.1.5 Linearity

In an ideal detector, the output signal is directly proportional to the input
illumination. Departures from this strict linearity are common. Some of these
are not very problematic if the functional relation between input and output is
well known and well behaved. For example, in the range of useful exposures, the
density of a developed photograph is directly proportional to the logarithm of
the input flux. Figure 8.2 illustrates two very typical departures from linearity.
At lower light levels, a detector may not respond at all — it behaves as if there
were an input threshold below which it cannot provide meaningful information.
At the other extreme, at very large inputs, a detector can saturate, and an upper
threshold limits its maximum possible response. Further increases in input will
not move the output signal above the saturation level.

8.1 Detector characterization
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8.1.6 Stability

The environment of a detector will change over time, perhaps because of
variation in temperature, atmospheric conditions, or orientation with respect
to gravity or to local magnetic fields. The detector itself may age because of
chemical or mechanical deterioration, electrical damage, or radiation and par-
ticle exposure. Unrecognized changes can introduce systematic effects and
increase uncertainties.

Two general approaches cope with detector instability. The first is to avoid or
minimize anticipated changes: e.g. use thermostatic controls to maintain a con-
stant temperature, keep the detector in a vacuum, shield it from radiation, use
fiber-optic feeds so that the detector remains motionless. Basically, employ
whatever strategies seem reasonable to isolate the detector from the environ-
ment. The second approach is to recognize that some changes are unavoidable
and calibrate the detector to correct for the instability. For example, if the
response of a detector deteriorates with age, make repeated observations of
the same standard source so you can compute a correction that compensates
for the deterioration.

Hysteresis is a form of detector instability in which the detector response
depends on its illumination history. Human vision, for example, exhibits the
phenomenum of positive and negative afterimage. Some solid-state detectors
can continue to report ghost signals from bright objects long after the source has
been removed.

8.1.7 Response time

How quickly can the detector make and report a measurement, then make and
report the next measurement? The minimum time required is an important
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parameter. Readout procedures for large CCDs, for example, can limit their
response time to a hundred seconds or more, while STJs and photo-emissive
devices have sub-millisecond response times.

8.1.8 Dynamic range

What is the maximum range in output signal that the detector will produce in
response to input? From Figure 8.2, you might surmise (correctly) that the upper
and lower detection thresholds limit the dynamic range. However, other details
of the detection process can influence the dynamic range. For example, if the
signal is recorded digitally as a 16-bit binary integer, then the smallest possible
signal is 1, and the largest is 65,535 (= 2'® — 1). Thus, even if the range set by
saturation is larger, the dynamic range is limited by data retording to 1:65, 535.

8.1.9 Physical size and pixel number

The physical size of the detector can be very important. To measure the light
from a single star in the telescope focal plane, for example, it will be advanta-
geous to match the detector size with the image size produced by the telescope:
if the detector is too small, it will not intercept all the light from the source; if it
is too large, it will intercept unwanted background light and probably produce a
higher level of detector noise. For some detectors, physical size is related to
other properties like dynamic range and response time.

A single-channel detector measures one signal at a time, while a multi-
channel detector measures several at once. An astronomer might use a simple
two-channel detector, for example, to simultaneously measure the brightness of
a source and the brightness of the nearby background sky. A linear array (a
string of closely packed detectors arranged in a straight line) might be a good
configuration for sensing the output of a spectrograph. A two-dimensional array
of detectors can record all parts of an astronomical image simultaneously.

Clearly, the physical size of each detector of an array determines how closely
spaced its elements, or pixels (for picture element) can be. Sometimes there
must be some inactive area between the sensitive parts of the pixels, sometimes
not. Large arrays are more easily manufactured for some types of detectors (e.g.
MOS capacitors) than for others (e.g. bolometers and wave detectors). There is
an obvious advantage in field of view for detectors with a large number of pixels.

Astronomers currently employ mosaics of solid-state arrays of up to one
billion pixels, with the largest individual arrays (CCDs of up to 100 megapixels
in size) finding application in the X-ray through optical regions. Somewhat
smaller arrays (1-4 megapixel) are in use at near-infrared (NIR) and mid-infrared
(MIR) wavelengths. Focal-plane arrays of hundreds of pixels are used on some
far-infrared (FIR) and sub-millimeter telescopes. Radio detectors are almost
always single-pixel or few-pixel devices. At the beginning of the CCD era,

8.2 The CCD

photographic plates had a clear advantage in pixel number: for a very moderate
cost, a photographic plate had a very large area (tens of centimeters on a side),
and thus, in effect, contained up to 10° pixels. Mosaics of CCD arrays, although
quite expensive, now match the size of medium-sized photographic plates.

8.1.10 Image degradation

Astronomers go to extremes to improve the resolution of the image produced by
a telescope — minimize aberrations, launch the telescope into space, and create
active and adaptive optics systems. Two-dimensional detectors like arrays
should preserve that resolution, but in practice can often degrade it. Sampling
theory was originally developed to understand electronic communications in
media such as radio broadcasting and music reproduction. The Nyquist theorem
states that the sampling frequency of a waveform should be greater than two
times the highest frequency present in the wave. Extending this theorem to the
spatial domain means that to preserve maximum detail, pixel-to-pixel spacing
should be less than the Nyquist spacing. The Nyquist spacing is one-half the full
width at half~maximum (FWHM) of the point-spread function of the telescope.
If pixel spacing is larger than the Nyquist value, the resulting under-sampling
of the image degrades resolution.

Other effects can degrade resolution. Signal can drift or bleed from its pixel
of origin into a neighboring pixel, or photons can scatter within the array before
they are detected.

8.2 The CCD

One morning in October 1969, | was challenged to create a new kind of computer
memory. That afternoon, 1 got together with George Smith and brainstormed for
an hour or so. ...When we had the shops at Bell Labs make up the device, it
worked exactly as expected, much to the surprise of our colleagues.

— Willard Boyle, Canada Science and Technology Museum, 2008

When Boyle and Smith (1971) invented the first charge-coupled devices at Bell
Laboratories in 1969 they quickly recognized the CCD’s potential as multi-pixel
light detector instead of a computer memory. By 1976, astronomers had
recorded the first CCD images of celestial objects.? Since that time, the CCD
has become a standard component in applications that include scanners, copiers,
mass-market still and video cameras, surveillance and medical imagers, indus-
trial robotics, and military weapon systems. This large market has diluted the
research and development costs for astronomy. The consequent rapid evolution

® The first CCD images reported from a professional telescope were of the planets Jupiter, Saturn,
and Uranus, taken in 1976 by Bradford Smith and James Janesick with the LPL 61-inch telescope
outside Tucson, Arizona.
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of the scientific CCD has profoundly revolutionized the practice of optical
observational astronomy. This section gives a basic introduction to the principles
of operation of the CDD and its characteristics as a detector.

8.2.1 General operation

Recall how an MOS capacitor stores photoelectrons in a potential well. A CCD
is an array of MOS capacitors (one capacitor per pixel) equipped with circuitry
to read out the charge stored in each pixel after a timed exposure. This read-out
scheme (called “charge-coupling”) moves charges from one pixel to a neigh-
boring pixel; pixel-by-pixel shifting is what makes the array a CCD, rather than
something else.

The basic ideas behind the array operation are simple. Iinagine a matrix of
MOS capacitors placed behind a shutter in the focal plane of a telescope. To take
a picture, we first make sure all the capacitor wells are empty, open the shutter
for the exposure time, then close the shutter. While the shutter is open, each
pixel accumulates photoelectrons at a rate proportional to the rate of photon
arrival on the pixel. At the end of the exposure, the array stores an electronic
record of the image.

Figure 8.3 describes how the CCD changes this stored pattern of electrons
into a useful form — numbers in a computer. In Figure 8.3a we show the major
components of the detector. There is the light-sensitive matrix of MOS capaci-
tors: in this case an array three columns wide by three rows tall. A column of
pixels in the light-sensitive array is called a parallel register, so the entire light-
sensitive array is known collectively as the parallel registers. There is one
additional row, called the serial register, located at the lower edge of the array
and shielded from light. The serial register has one pixel for each column of
parallel registers (in this case, three pixels). Both the serial and parallel register
structures are fabricated onto a single chip of silicon crystal.

Reading the array requires two different charge-shifting operations. The first
(Figure 8.3b) shifts pixel content down the columns of the parallel registers by
one pixel. In this example, electrons originally stored in row 3 shift to the serial
register, electrons in row 2 move to row 3, electrons in row 1 move to row 2. Just
before this first shift is initiated, the serial register is cleared of any charges that
may have accumulated before or during the exposure.

The second operation now reads the newly filled serial register by shifting its
contents to the right by one pixel (Figure 8.3c1). The electrons in the rightmost
pixel shift into a new structure — a series of output amplifiers — that ultimately
converts the charge to a voltage. This voltage is in turn converted to a binary
number by the next structure, the analog-to-digital converter (ADC), and the
number is then stored in some form of computer memory. The CCD continues
this shift-and-read of the serial register, one pixel at a time (Figures 8.3¢2 and
8.3¢3) until all serial register pixels have been read.
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Now the whole operation repeats for the next row: there is another shift of the
parallel registers to refill the serial register with the next row (Figure 8.3d); the
serial register is in turn read out to memory. The process continues (parallel
shift, serial shifts, and reads) until the entire array has been read to memory. The
first stage of the output amplifier is usually fabricated onto the same silicon chip
as the registers. The subsequent amplifiers and the ADC are usually located in a
separate electronics unit.

How does the CCD persuade the electrons stored in one capacitor to move to
the neighboring capacitor? Many strategies are possible, all of which depend
upon manipulating the depth and location of the potential well that stores the
electrons. A parallel or serial register is like a bucket brigade. The bucket
(potential well) is passed down the line of pixels, so that its contents (electrons)
can be dumped out at the end. Figure 8.4 illustrates one strategy for moving the
well. The depth of a potential well depends on the voltage applied to the metal,
and is greatest at the Si--Si0O, junction, closest to the metal layer. (See, however
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and readout. (a) The
accumulated
photo-electronsin a3 X 3
array of capacitors — the
parallel register. (b) Shift
of the bottom row into the
serial register, all
remaining rows shift
down in the parallel
register. (c) Read of the
serial register one
column at a time. (d) Next
row shifts down into the
empty parallel register.
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Fig. 8.4 Gate structure in
a three-phase CCD. Two
pixels are shown in cross-
section. Collection and
barrier potentials on the
gates isolate the pixels
from each other during
an exposure.
Overlapping gates
produce a gradient in the
barrier region (dashed
curve in lower figure) that
enhances collection.
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the section below on the buried-channel CCD.) The figure shows two pixels in
the same register (column) of a three-phase CCD. In this device, the metal
electrode is separated into three gates, and these are interconnected so that gate
1 of every pixel connects to gate 1 of every other pixel, and likewise for gates 2
and 3. Thus, a single pixel can simultaneously have three separate voltages or
Pphases applied to its front side, producing a corresponding variation in the depth
of the potential well, as illustrated in the figure. The interconnection of gates
insures that the pattern of well depth is identical in every pixel of the register.

Setting the correct voltages on three separate gates implements both
charge-shifting and pixel isolation. For example, during an exposure, phase
2, the voltage on the central metal electrode, can be set to a large positive value
(say 15 V), producing what is known as the collection potential in the semi-
conductor. The other two phases are set to a smaller positive voltage (say 5 V),
which produces the barrier potential. The barrier potential maintains the
depletion region in the silicon, but prevents electrons from drifting across
pixel boundaries. Photoelectrons generated in the barrier region of the silicon
will diffuse into the nearest deep well under the collection phase and remain
there. Each isolated pixel thus stores only charges generated within its boun-
daries.

To illustrate how the three gates might be used for charge shifting, assume
again that the pixels are isolated during an exposure with collection under phase
2 (@, = +15 V) and a barrier under the other phases (¢,;=¢; = +5 V).

Figure 8.5 illustrates the three voltage changes that will shift charges by one
pixel.

8.2 The CCD

1 1
- Pixel 1 —>E<— Pixel 2 —»E
' ]
A Ut
e — =0 0 X

i
1
1
2 Barrier potential
I
L
]

======j=========2== Collection potential

] ]
1 L}
] ) 1 -
1] I 1
i ) 1
] ) L]
1 ] 1
2 i ' i
: e @ : ®og0 :
L} ] T
[} ] 1
1 (] 1

1. At time ¢, gate voltages change so that ¢ = 15 V and ¢,= 10 V. The electrons under
¢, will diffuse to the right, and collect under ¢5.

2. Attime t,, after a delay that is long enough for all electrons to diffuse to the new location
of the deep well, voltages change again, so that ¢, =15V, ¢;=10 V and @,=5V. Stored
electrons drain from phase 3 of the original pixel to phase 1 of the neighboring pixel.

3. A third cycling of gate voltages (@, = 10 V, @,= 15 V and ¢,= 5 V) brings the
electrons to the middle of the pixels at time #3, and the one-pixel shift is complete.

The values of the barrier and collection potentials are somewhat arbitrary, but
there are usually some fairly well-defined optimal values. These values, along
with the properties of the insulator layer, determine required values of the clock
voltages (the input values for ¢, ¢,, and ¢,). An electronic system called the
CCD controller or CCD sequencer sets the clock voltages and manages the very
precise timing of their changes. The controller, usually built around a simple
microprocessor, is generally housed in the same electronics box as the ADC and
output amplifiers. Alternatively, the controller can be a program on a general-
purpose computer. Besides manipulating the clock voltages, the controller also
performs and coordinates several other functions, generally including:

e clearing the appropriate registers before an exposure and or a read;
e opening and closing the shutter;
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Fig. 8.5 Shifting potential
wells in a three-phase
CCD. See Figure 8.4 for
the corresponding
physical structure. Two
pixels in the same
register {either parallel or
serial) are illustrated
here. At the end of the
shift, electrons stored in
pixel 1 have shifted to
pixel 2.
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e controlling the sequence of reads of the parallel and serial registers, including the
patterns for special reads (see the discussions of on-chip binning and windowing
below);

e controlling the parameters of the output amplifiers and the ADC (in particular, setting
two constants called the bias level and the CCD gain discussed below);

e communicating with the computer that stores the data.

Two-phase and four-phase readout schemes are also sometimes used in
CCDs. Most modern consumer digital cameras utilize arrays of (complemen-
tary-metal-oxide-semiconductor) CMOS capacitors, in which individual output
amplifiers are fabricated onto the front side of each pixel. This design means that
the pixels can be read out in parallel, rather than one at a time. The CMOS
detectors are less expensive than CCDs of the same size, consumg: less power,
and read out very rapidly (around 70 megapixels per second). Tiiey have not
seen much use in astronomy, since they suffer from much higher read noise,
dark current, pixel-to-pixel charge diffusion, and (usually) lower QE; however,
they are gradually becoming more competitive with CCDs.

8.2.2 Channel stops, blooming, full well, and gain

The barrier potential prevents electrons from migrating from one pixel to
another along a column in the parallel registers. What about migration along
arow? In a classical CCD, shifts along a row are never needed, except in the
serial register. The CCDs prevent charge migration along a row in the parallel
registers by implanting (by heavily diffusing a dopant) a very highly conductive
strip of silicon between columns. These channel stops held, say, at electrical
ground, produce a permanent, extra-high barrier potential for stored electrons.
Think of a pixel as a square bucket that holds water (or electrons). Two sides of
the bucket, those that separate it from the adjacent columns, are maintained by
the channel stop and are permanently tall and thin. The other two sides, the ones
that separate it from its neighbors on the same column, are not as tall, and can be
lowered or moved by “clocking” the gate voltages.

Consider what might happen if a pixel in an array fills with electrons during
an exposure. As additional photoelectrons are generated in this saturated
pixel, they will be able to spill over the barrier potential into the adjacent
wells along their column, but cannot cross the channel stop. This spilling of
charge along a column is called blooming (see Figure 8.6). Bloomed images
are both unattractive and harmful: detection of photons in a pixel with a filled
well becomes very non-linear; moreover, blooming from a bright source can
ruin the images of other objects that happen to lie on the same CCD column.
Nevertheless, in order to optimize the exposure of fainter sources of interest,
astronomers will routinely tolerate saturated and bloomed images in the same
field.

8.2 The CCD

There are designs for anti-blooming CCDs. Recent designs utilize special
clocking during the exposure in a buried-channel CCD (see below) to tempo-
rarily trap excess electrons at the oxide interface.

The maximum number of electrons that can be stored in a single pixel with-
out their energies exceeding the barrier potential is called the CCD’s full well.
The size of the full well depends on both the physical dimensions of the pixel,
design of the gates, and the difference between the collecting and barrier poten-
tials. Typical pixels in astronomical CCDs are 830 pum on a side and have
full-well sizes in the range 25,000 to 500,000 electrons.

The final output from a scientific CCD is an array of numbers reported by the
ADC to the storage computer. The number for a particular pixel is usually called
its pixel content, and is measured in ADUs (analog-to-digital units). Pixel contents
are proportional to the voltage the ADC receives from the output amplifier. The
gain of the CCD is the number of electrons that need to be added to a pixel in order
to increase the output contents for that pixel by one ADU.

For example, suppose a particular CCD has a full well of 200,000 electrons,
and is equipped with a 16-bit ADC. The ADC is limited to digital outputs
between 0 and 65,535 (= 2!°—1). A reasonable value for the gain might
be 200,000/65,535 = 3.05 electrons/ADU. A smaller gain would mean that the
CCD is better able to report small differences in pixel content, but would reach
digital saturation before reaching the electronic full well. One might do this
intentionally to avoid the non-linear shoulder in Figure 8.2. At a larger gain, the
CCD would reach full well before the output could reach the maximum possible
digital signal, so dynamic range would be reduced.

8.2.3 Readout time, read noise, and bias

To maximize DQE, the amplifier and ADC of an astronomical CCD should
introduce the smallest possible noise to the output signal. A technique called
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Fig. 8.6 Blooming on a
CCD image: the saturated
vertical columns are the
bloom. The other linear
spikes on the bright star
image result from
diffraction by the vanes
supporting the
telescope’s secondary
mirror.
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correlated double sampling (CDS) is capable of very low noise operation —only
a few electrons per pixel. The noise added by the CDS circuit depends crucially
on how quickly it does its job — the faster, the noisier. Another consideration —
the time needed for the analog-to-digital conversion — also limits the read
time per pixel. Practical times correspond to a pixel sample frequency of 10
to 200 kHz, with higher frequencies producing higher noise. Except for low
frequencies, noise added by the amplifier stage is proportional to the square root
of the frequency.

The basis of charge-coupled readout is the one-pixel-at-a-time movement of
the array contents through a single amplifier, and this is a bottleneck. A low-
noise CDS stage in a scientific CCD must read out slowly, and the larger the
array, the longer the read time. An important difference between scientific-grade
CCDs and the commercial-grade CCDs and CMOS arrays in camcorders is the
readout rate — to obtain real-motion video images, an array must read out about
30 times a second. The large read noise that results is usually not objectionable
in a consumer camera because of the high input level. In contrast, the astro-
nomical input signal is usually painfully low, and a low-noise, slow-sean CCD
for astronomy may require many tens of seconds to read a single image.

There are some cases in astronomy where the large read noise of a rapid scan
CCD is not objectionable, and in which time resolution is very important —
observations of occultations of bright stars or rapid changes in solar features,
for example. Also note that a rapid scan is not a problem if no data are being
digitized. Thus, reading an array to clear it before an exposure can be done very
quickly.

For the usual astronomical tasks, though, it is mainly lengthy readout time that
puts a practical limit on the number of pixels in a CCD. (Time spent reading the
detector is time wasted at the telescope!) Two strategies can speed read times.
The first uses multiple amplifiers on a single array. Imagine, as in Figure 8.7a, an
array with an amplifier at each corner. The CCD has two serial registers, at the
top and bottom. The controller clocks the readout to split the parallel registers —
they read out to both ends simultaneously —and does the same with each serial
register. Each amplifier reads one quarter of the array, so the total read time is
reduced by the same factor. The image can then be re-assembled in software.
Multi-amplifier astronomical CCDs up to 9000 X 9000 pixels now (2010)
exist.

A second strategy is to build a mosaic of several very closely spaced but
electrically independent CCDs. Figure 8.7b shows an eight-element mosaic read
by 16 amplifiers. An early device similar to this, the Mosaic Imager, was placed
in service at the Kitt Peak National Observatory in 1998. It contained eight
2048 X 4096 CCDs arranged to form an 8196 X 8196 pixel (64 megapixel)
detector that is 12 cm (5 inches) on a side. Gaps between the individual CCDs
are about 0.6 mm (40 pixels). A relatively simple combination of shifted multi-
ple exposures will fill in those parts of an image masked by the gaps on a single
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exposure. Mosaics have become so important that some modem CCDs are
manufactured to be “almost-four-side-buttable” — so that the width of the gaps
in a mosaic need be only to 30-100 pixels on all sides. At the present time
(2009), there are several 50120 megapixel mosaic arrays in service, and
several observatories are about to introduce mosaics of over 100 devices and
up to 3 gigapixels (see chapter 4 of Howell, 2006). These huge arrays expect to
have not-very-objectionable readout times in the 2060 second range. A major
problem with these large-format arrays, in fact, may turn out to be simple
data storage: an observer can expect to generate terabytes of image data in a
few nights.

8.2.4 Dark current, cooling, and vacuum enclosures

At room temperature, a CCD is a problematic detector for astronomy. The
energy of thermal agitation generates electron—hole pairs in the depletion zone
and the resulting steady flow of electrons into the CCD potential wells is called
dark current. Dark current is bad for three reasons:

1. It adds some number of electrons, Np, to whatever photoelectrons are produced in a
pixel. You must make careful calibrations to subtract Np from the total.

2. Dark current adds not only a background level, Np, but also introduces an associated
uncertainty or noise to any signal. Since the capture of dark-current electrons into the
pixel wells is a random counting process; it is governed by Poisson statistics. The
noise associated with Np dark electrons should be+/Np. This noise is more insidious
than the background level, since it can never be removed. Dark current always
degrades SNR. g

3. At room temperature, the dark current can saturate a scientific CCD in seconds, which
makes it impossible to record faint objects. Not good.

. Lower the temperature of the CCD, and you reduce dark current. The Fermi
filstnbution provides an estimate for the rate at which dark charges accumulate
n a semiconductor pixel:
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Fig. 8.7 Large-format CCD
strategies. (a) A large
monolithic detector with
multiple serial registers
and amplifiers (four, in
this case). Read time is
reduced by a factor equal
to the number of
amplifiers, and the total
CTE is improved. (b) A
mosaic of eight arrays
butted to form a single
large-area detector.
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% = A, T Te -5
Here T is the temperature in kelvins, 4 is a constant that depends on pixel size
and structure, and Eg is the band-gap energy. A large fraction of dark current in
a pixel arises at the Si—Si0O, interface of the capacitor, where discontinuities in
the crystal structure produce many energy states that fall within the forbidden
band. Electrons in these interface states have small effective band gaps, and
hence produce a large dark current.

A common method for cooling a CCD is to connect the detector to a
cryogen — a very cold material with a large thermal mass. A very popular
cryogen is a bath of liquid nitrogen (LN,), a chemically inert s:i:tance that
boils at 77 K =—196 °C. Since it is generally a good idea to keep e CCD at a
somewhat warmer temperature (around —100 °C), the thermal link between
detector and bath is often equipped with a heater and thermostat.

A cold CCD produces difficulties. The CCD and the LN, reservoir must be
sealed in a vacuum chamber for two reasons. First, a CCD at—100 °C in open air
will immediately develop a coating of frost and other volatiles. Second, the
vacuum thermally insulates the LN, reservoir from the environment, and prevents
the supply of cryogen from boiling away too rapidly. Filling the CCD chamber
with an inert gas like argon is a somewhat inferior altemative. Vacuum containers,
called Dewars, can be complicated devices (see Figure 8.8), but are quite common
in observatories. At a minimum, the dewar must provide a transparent window for
the input, a method for feeding electrical signals though the vacuum seal, a system
for adding cryogen, and a method for periodically renewing the vacuum.

Another option for more modest cooling is dry ice (solid CO;), which is less
expensive than LN,. Dry ice sublimates at —76 °C = 197 K.

Compact and relatively inexpensive thermoelectric (Pelfier junction) coolers
instead of cryogens require very small dewar sizes. These solid-state coolers can
maintain a detector in the —30 to —50°C range, where the dark current of an
ordinary CCD is still quite high, but where the dark current from an MPP CCD
(see below) is acceptable for many astronomical applications. Such coolers are
considerably more convenient to use than cryogens.

At the other extreme, superconducting junctions, many small band-gap
detectors for the infrared, and most bolometers, require temperatures below
what liquid nitrogen provides. Liquid helium, which boils at 4.2 K, is an
expensive cryogen that is difficult to handle. Liquid *He boils at 3.2 K, but is
even more difficuit and expensive. To avoid the expense of evaporating helium
into the air, one option is a closed-cycle refrigerator that compresses and
expands helium fluid in a cycle. If they employ two or three stages, these
systems can cool detectors to the 1060 K range. Special closed systems using
helium-3 evaporation can bring small samples to temperatures in the 0.3-3.2 K

range.
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8.2.5 Charge-transfer efficiency

The charge-coupled readout works perfectly only if all the electrons in a
well shift from pixel to pixel. Disaster results if significant numbers
of electrons are left behind by a shift. Images will appear streaked, and
photometry becomes inaccurate. Signal loss because of charge-transfer
inefficiency is greatest from the pixels furthest from the amplifier.
The fraction of electrons in a pixel that are successfully moved during a
one-pixel transfer is the charge-transfer efficiency, or CTE. Although one
transfer will require three clock cycles and sub-pixel transfers in a three-
phase device, CTE is always computed for a full pixel transfer. In a single-
amplifier CCD, p is the actual number of full pixel transfers needed to read a
particular charge packet. If the rows and columns of the parallel registers are
numbered from the corner nearest the amplifier, then p = R + C, where R and
C are the row and column numbers of the pixel in question. The fraction of
the original charge packet that remains after p transfers (the total transfer
efficiency, or TTE) is just

TTE = (CTE)
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Fig. 8.8 A simple dewar
for cooling a detector
using liquid nitrogen.
This design is common
for devicés that “look
upward,” and prevents
cryogen from spilling out
of the reservoir as the
dewar is tilted at
moderate angles.
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The CTE needs to be very close to one. For example, suppose a 350 X 350 pixel
array has a CTE of “three nines” (CTE = 0.999), which in this context is not
very close to 1. Then p = 350 + 350 = 700, so TTE = (0.999)700 = 0.49; this
device will lose over half the charge from the most distant pixel in the array
before bringing it to the amplifier. Multi-megapixel arrays require CTE values
approaching six nines.

What limits CTE? One issue is time — when CCD gate voltages change
during a read, electrons need time to diffuse into the new location of the poten-
tial well. Usually, the required time is shorter than the time needed for the CDS
and amplifiers to complete a low-noise read. However, at very low temperatures,
electron velocities can be so small that CTE suffers because of slow diffusion,
and so operation below about —100 °C is inadvisable. .

Charge traps are a more serious limitation. A trap is any4ocation that will not
release electrons during the normal charge-transfer process. Some traps result
from imperfections in the gates, channel stops, or the insulation of a pixel —flaws
that deform the potentials during a read cycle to create unwanted barriers. Other
traps are due to radiation damage, to unintended impurity atoms (usually metals
like iron or gold), to structural defects in the silicon lattice, and to some effects
not completely understood. The surface of the silicon layer in contact with the
insulator will invariably have a large number of charge traps; these are such a
serious problem that all modem CCDs are designed so that the potential well
excludes the front surface (see the next section). Some traps affect only a few
electrons each. If scattered throughout the entire body of a CCD, they produce a
small decrease in the overall CTE. Other traps can render a pixel non-functional,
so that it will not transfer charge in a meaningful way. This compromises the
entire column upstream from the trap. Devices with a “bad column™ or two are
still very useful, but place additional demands on the observing technique.

Manufacturing defects can also cause a complete failure of charge transfer.
The usual problems are short circuits and open circuits in the gate structure, or
shorts between a gate and the semiconductor. Any of these can render a single
pixel, a partial or complete column, or an entire device unreadable. The expense
of a particular CCD is directly related to the manufacturing yield — if many
devices in a production run need to be discarded, the cost of a single good device
must rise. In the early days of CCD manufacture, yields of acceptable devices of
a few percent were not uncommon.

8.2.6 The buried-channel CCD

The simple MOS/MIS (metal-insulator-semiconductor) capacitor we have
been discussing up until now has its minimum electron potential (i.e. the
bottom of the collection well) at the Si—SiQ, interface. A CCD made of these
capacitors is a surface-channel device, since charge transfer will require
movement of electrons close to the interface. The high density of trapping
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states at the interface makes it impossible to achieve acceptable charge-trans-
fer efficiency in a surface-channel CCD. (Values of only 0.99 are typical.) All
modern scientific CCDs are designed so that the transfer channel is located
several hundred nanometers below the interface. In these buried-channel
CCDs (BCCDs), all electrons collect in a region safely removed from the
surface traps, and all charge transfers take place within the unperturbed inte-
rior of the semiconductor lattice.

Manufacturers can produce a buried channel by constructing a p— junction
near the semiconductor surface. Figure 8.9 illustrates the basic principle. Figure
8.9a shows the potential energy for electrons in an MOS or MIS device in which
the semiconductor consists of a thin n-type region (perhaps 300-800 nm thick)
layered on top of a much thicker p-type region. Within the semiconductor, the
potential exhibits the basic pattern for a junction diode —there is a high-resistivity
region depleted of majority charge carriers near the junction, and a potential
difference, Eg, across the depletion zone. In Figure 8.9a we comnect the p side to
electrical ground, and set the gate voltage a relatively large positive voltage near
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Fig. 8.9 A buried channel
in a p—n junction
capacitor. (a) There is no
buried channel in the
electron potential when
the normal collection
phase voltage is applied.
If the gate voltage is
reduced, as in (b),
electrons collect away
from the interface. (c)
Inverting the voltage on
the barrier-phase
electrodes pins the
surface potential to the
channel-stop value and
allows a current of holes
to flow to neutralize dark-
current electrons.
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Eg. In this state, photoelectrons created in the depletion zone will be swept into
the broad channel in the n region, where they can still interact with surface traps.
Making the gate voltage even more positive will deepen the well and create a
surface channel.

To create the buried channel, the voltage on the gate is made more negative.
In Figure 8.9b, the gate voltage has been lowered so that electrons are repelled
from the surface. This alters the shape of the potential and produces a minimum
in the n-region, which is called the collection potential. (The required voltage
on the gate is the collection phase.) Note two important features: First, electrons
that collect in the well do not contact the surface. (This is good.) Second, the
capacity of the well is reduced compared to a surface-channel device made from
the same material. (This is not so good).

Figure 8.9c illustrates the electron potential under the barricr phase. Here the
gate voltage is even more negative. The potential minimum in the semiconduc-
tor, although somewhat closer to the surface, is still buried. As a result, electrons
generated under the barrier phase also avoid the surface traps as they move
internally to the nearest collection potential.

8.2.7 Alternative CCD readout designs

You should be aware of several alternative methods for reading out the
CCD that offer some specialized advantages. Consult Howell (2006) or the
manufacturers and observatory websites (€.g. pan-STARRS, e2v, Kodak; see
Appendix 1) for further details.

The orthogonal-transfer CCD, or OTCCD (see Tonry et al., 1997) has a
gate structure that permits charge-coupled shifting of pixel contents either
along the row or along the column, on either the entire array or on subsections.
Orthogonal-transfer CCDs can make small image shifts to compensate for tip—
tilt seeing-disk motion during an exposure, and are being used for the
1 gigapixel mosaic of the pan-STARRS project.

Frame-transfer CCDs permit a very short time interval between successive
frames. They recognize that it is the amplifier stage that limits the readout rate of
a scientific CCD, so rapidly read an acquired frame into an inactive (shielded)
set of parallel registers. The device then reads the shielded frame slowly through
the amplifier while the next frame is being acquired.

Low-light-level CCDs or L3CCDs have additional extra-large, deep-well
MOS capacitors in a “charge multiplication” extension of the serial register.
The device clocks charges from the serial register into these capacitors at a very
high voltage, so that the energy of a transferred electron can produce an addi-
tional electron—hole pair when it enters a multiplication capacitor. Several hun-
dred multiplication transfers typically produce multiplication gains of 1001 000
before amplification, so read noise is insignificant, permitting rapid readout
(1-10 MHz) and true photon-counting at low light levels.

8.2 The CCD

8.2.8 The MPP CCD

Interface states at the Si-SiO, junction remain the major source of dark current
in a simple BCCD. Thermal electrons can reach the conduction band by “hop-
ping” from one interface state to another across the forbidden gap. You can
eliminate this electron hopping by pinning a phase, as in Figure 8.9c. To pin the
phase, you set the voltage on the gate to so negative a value that the potential at
the interface inverts, that is, it reaches the same potential as the back side of the
p region, which is also the same, ¥, as the potential of the conductive channel
stops. Any further reduction in the gate voltage has little effect on the interface
potential, since the surface is now held at ground by holes that flood in from the
channel stops. The abundance of holes means that thermal electrons are neu-
tralized before they can hop through the interface states. Dark current in a
pinned phase is reduced by several orders of magnitude.

A partially inverted three-phase CCD operates with one non-inverted phase
(the collection phase, as in Figure 8.9b), and with the other two phases pinned
and serving as the barrier phases, as in Figure 8.9c. Dark current in such a device
is about one third of what it would be in a completely non-inverted mode. If all
three phases are pinned, the CCD is a multi-pinned-phase (MPP) device, and
dark current less than 1% the rate in non-inverted mode. The obvious difficulty
with MPP operation is that there is no collection phase —the buried channel runs
the entire length of a column. Multi-pinned-phase devices therefore require
additional doping under one of the phases to make a permanent collection
potential. This is possible because the value of Ep in Figure 8.9 depends on
the density of dopants in the semiconductor. In an MPP device, for example, the
surface under phase 2 might invert with the collection phase set at =5V, while
the other two (barrier) phases require —7 V for inversion.

With their remarkably low dark currents, MPP CCDs can operate at room
temperature for several minutes without saturation. In recent designs, dark
rates below 0.1 electron per second are routine at—40 °C, a temperature attain-
able with inexpensive thermoelectric coolers. An MPP CCD controlled by a
standard personal computer is a formidable and inexpensive astronomical
detector within the financial means of many small observatories, both profes-
sional and amateur. As a result, modern observers using telescope apertures
below 1 meter are making quantitative astronomical measurements of a kind
that would have been impossible at the very best observatories in the world in
1975. )

The full-well capacity of an MPP device is a factor of two or three less than a
partially inverted BCCD. Modern MPP devices nevertheless have respectable
full wells. Appendix I gives the specifications for a few devices currently on the
market. If the larger full well is more important than the reduced dark current,
the proper selection of clock voltages makes it possible to run a device designed
for MPP operation in a partially inverted mode.
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8.2.9 Surface issues

We need to address the very practical question of getting light into the depletion
region of the CCD pixels.

Frontside options. The most direct approach sends light through the metal
gates. Since even very thin layers of most metals like copper or aluminum are
poor transmitters, the “metal” layer of the CCD is usually made of highly doped
polysilicon: silicon in a glass-like, amorphous state —a random jumble of micro-
scopic crystals. A thin (about 0.5 micron) layer of doped polysilicon is both
relatively transparent as well as a good electrical conductor, but it does, how-
ever, absorb green, blue and (especially) ultraviolet light. Other conductive
materials, like doped indium tin oxide (ITO) have better transparency properties
than polysilicon; ITO electrodes are becoming common, but are somewhat
harder to fabricate.

There are two general strategies for further improving the short wavelength
QE of a front-illuminated CCD. The first is somehow to make the gate structure
more transparent. The second is to change the wavelength of the incoming light
to one at which the gates are more transparent.

Open-electrode architecture improves transparency with a gate structure
that leaves part of the pixel uncovered. For example, the collection-phase elec-
trode might be oversized and shaped like a hollow rectangle. It is even possible
to fabricate pixel-sized microlenses over the frontside to redirect much of the
incoming light to the uncovered area of each pixel.

A related approach is the virtual-phase CCD, where a single gate covers half
of the pixel, and a four-step potential profile is constructed by implanting dop-
ants in the semiconductor. Changing the voltage on the single gate can produce
pixel-to-pixel charge transfer similar to a four-phase CCD. Virtual-phase CCDs
have even better blue QEs than open-electrode devices, especially if equip-
ped with microlenses, but are more difficult to fabricate and generally have
relatively poor CTE values.

A different strategy applies a thin coating of phesphor on top of the gates. The
useful phosphors are organic molecules that absorb a short-wavelength photon
to move to an excited state, then de-excite by emitting one or more longer-
wavelength photons. Lumigen (or lumogen), for example, is a commercial com-
pound that absorbs light shortward of 420 nm, and is otherwise transparent. Upon
de-excitation, it emits photons at around 530 nm, which can easily penetrate
polysilicon gates. Since phosphors emit in all directions, they will slightly
degrade image resolution at short wavelengths. Another drawback is that some
phosphors tend to evaporate in a vacuum, especially at high temperatures.

Backthinning. A completely different solution sends the light in through the
back (from the bottom of Figure 8.10) of the device, avoiding the gates com-
pletely. This backside illumination has the advantage that green, blue, and
ultraviolet, which would be absorbed by a polysilicon or ITO layer, will pass
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directly into the silicon. Since these photons have a short absorption depth, they
create photoelectrons mainly near the back face of the device. This is a serious
problem. In order for the electrons to be able to diffuse from the back face into
the depletion zone without recombining, the semiconductor layer needs to be
very thin (1020 pm). “Thinning” the silicon will in tumn reduce its ability to
absorb NIR photons, which have a large absorption depth. The final geometry
needs to be something of a compromise. Nevertheless, astronomers have
generally embraced backthinned CCDs, since they detect a considerably larger
fraction of incident photons of all wavelengths than does any frontside-
illuminated device (see Figure 8.11). Their main drawback is that they are
difficult to manufacture and therefore expensive, if available at all.

If red and near-infrared QE is very important, the deep-depleted CCD offers
some improvement over the normal backthinned device. Because the depth of
the light-sensitive depletion zone is inversely proportional to the dopant con-
centration, use of a lightly doped (high resistivity) silicon layer means that the
total layer thickness of the CCD can be increased to about 50 pum. The thicker
detector has greater long-wavelength sensitivity, and is mechanically easier
to fabricate. However, achieving the required resistivity can be difficult, and
cosmetic quality to date has been inferior to thin devices.

Anti-reflection coatings. An anti-reflection (AR) coating is most effective
for light of a particular wavelength, so a CCD designer must choose the coating
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Fig. 8.10 Schematic of a
thinned, three-phase
CCD. In a conventional
CCD, insulated gate
ele¢trodes usually
overlap, while in an open
architecture, gaps more
closely follow the pixel
pattern. This drawing is
of a backthinned device.
A front-illuminated
device would have a
much thicker silicon
layer, with the AR coating
above the gates.
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Fig. 8.11 Efficiencies of
light detection for various
illumination strategies in
a CCD, and photocathode
choices in a PMT. Curves
are representative of the
extremes. The
abbreviations Bl and Fl
indicate back- and front-
illuminated CCDs. The
figure shows the QE
curves for a normal
thinned device with a
mid-band AR coating, a
deep-depletion (DD) CCD
with a near-infrared
coating, ITO and
polysilicon front-
illuminated CCDs. The
two photomultiplier
tubes (PMTs) are very
high efficiency bi-alkali
photocathodes with
different spectral
sensitivities.
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with the intended use of the detector in mind. Often CCD manufacturers offer a
choice of coatings to enhance either the short-wavelength, mid-wavelength or
NIR response. Figure 8.11 shows a selection of the QE characteristics of a few
different CCD designs.

8.3 Photo-emissive devices

Researchers have developed the simple vacuum photodiode described in the last
chapter from a detector of very limited capability (with poor QE in the red,
very low signal levels, mechanical fragility, and single-channel operation) into
devices that compete with or enhance CCDs in special circumstances. In this
section we examine three astronomical detectors that depend upon the vacuum
photoelectric effect.

8.3.1 The photomultiplier tube

One disadvantage of the simple vacuum photodiode described in the last chapter
(Figure 7.24) is low signal level. The photomultiplier tube (PMT) is a vacuum
device that increases this signal by several orders of magnitude. Figure 8.12
illustrates its operation. In the figure, a voltage supply holds a semi-transparent
photocathode on the inside of the entrance window at large negative voltage,
usually around one or two kilovolts. A photon hits the cathode and ejects a
single electron. In the vacuum, this electron accelerates towards the more pos-
itive potential of a nearby electrode called a dynode, which is coated with a
material (e.g. Cs;Sb, CsKSb, BeO, GaP) that can easily release electrons to the
vacuum if hit by an energetic particle. Because the original photoelectron
impacts the dynode with 100 eV or so of kinetic energy, it usually ejects several
secondary electrons. The number of secondary electrons is a statistical quantity
whose mean value, J, usually lies between 2 and 10. The group of electrons
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ejected from the first dynode then accelerates to the second dynode, where each
first-dynode electron produces ¢ second-dynode electrons. The process contin-
ues through n dynodes, until the greatly multiplied pulse of electrons lands on the
anode of the PMT. If each dynode is equivalent, the total number of electrons
in a pulse generated by a single photoelectron is

N = Ad"

where the factor 4 accounts for inefficiencies in redirecting and collecting
primary and secondary electrons.

In the figure, the signal is the average DC voltage measured across a load
resistor. However, for weak sources, the large pulses of electrons that arrive at
the anode are easily counted electronically, and the PMT can operate in a pulse-
counting mode: each pulse is generated by the arrival of a single photon at the
cathode. In this mode, the QE of the PMT depends on the QE of the photo-
cathode, which can be as high as 40-50% for some materials (see Figure 8.11).

The single-channel PMT was the detector of choice for precise astronomical
brightness measurements from 1945 until the advent of CCDs in the early
1980s. The spectral responses of the available PMT photocathode materials
defined, in part, ste of the now-standard photometric band-passes (the U, B,
and V bands in Table 1.2, for example). Since photomultipliers have few advan-
tages over CCDs, they have become rare at observatories. One important
advantage of the PMT, however, is response time. The temporal spread of a
single pulse at the anode limits the shortest interval over which a PMT can sense
a meaningful change in signal. Pulse widths are so narrow (5-10 nanosecond) for
many PMTs that they can, in principle, detect signal changes as rapid as a few
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Fig. 8.12 A simple
photomultiplier tube. The
potential of the first
dynode accelerates a
singlé photoelectron
emitted from the
cathode. Its impact
releases several
secondary electrons,
which accelerate and hit
dynode 2, releasing
another generation of
secondaries. After {in this
case) eight stages of
amplification, a large
pulse of electrons flows
through the anode and
load resistor to ground.
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Fig. 8.13 (a) A single
microchannel — a small
glass tube whose interior
is coated with dynode-
type material. A large
potential drop along the
tube insures that an
electron impact at one
end will produce a burst
of secondary electrons at
the other. (b) A closely
packed array of channels
forming an MCP.
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milliseconds. The response time of a CCD, in contrast, is several tens of seconds
for a standard slow-scan device, with quicker response possible with increased
noise. Arrays of STJs, although still in the development phase, have the
potential for response times similar to PMTs.

8.3.2 The microchannel plate

The upper part of Figure 8.13 shows an important variation on the PMT. Take a
glass capillary with a diameter between 5 and 25 pm, and a length around 40
times its diameter. Coat the inside surface of this tube with a semiconductor that
has good secondary electron-emitting properties, and connect the ends of the
channel coating to the voltages as shown. You have created a microchannel.
Place this microchannel assembly in an evacuated chamber between a photo-
cathode and an anode, and it can serve in place of the dynode chain of a PMT. A

(a)
\ Phoroelectron
ol Eret
Photon S
AVAVAV S _
Photocathode Secondarvj
electrons

8.3 Photo-emissive devices

photoelectron from the cathode will accelerate towards the upper end of the
channel, where it strikes the wall and generates a spray of secondary electrong,
These secondary electrons will in turn strike the channel wall further down,
multiplying their numbers. After several multiplications, a large pulse of elec-
trons emerges from the end of the microchannel and accelerates to the anode.

A microchannel plate (MCP), as illustrated in Figure 8.13b, consists of an
array of up to several million microchannels closely packed to form a plate or
disk several millimeters in diameter and less than a millimeter thick. The elec-
trical contact that coats the front surface can be made of a metal that has some
secondary-electron emission capabilities, so that photoelectrons that do not
strike the inside of a channel might still be detected via emission from the
contact. You can make a high gain but very compact PMT by sandwiching
several MCPs between a photocathode and anode in a vacuum enclosure, as
in Figure 8.14. Such MCP PMTs, operated as single-channel devices, have an
advantage in size, power consumption, response time and stability in magnetic
fields compared to dynode-based devices.

The MCP, however, is most valuable as a component in a two-dimensional
detector. Various anode configurations or electron-detection devices can gen-
erate an output image that faithfully reproduces the input on the cathode of an
MCP. The multi-anode microchannel array detector (MAMA) is an example.
In the MAMA, the anode of the MCP PMT is replaced with two planes of
parallel wires that form an x— grid. A pulse of electrons emerging from a
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Fig. 8.14 A schematic
MCP PMT. The dynodes
of the photomultiplier are
replaced by two
microchannel plates. The
capagcitor at the output
means the device is used
in pulse-counting mode.
Compare with Figure 8.11.
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particular microchannel will impact with maximum intensity on one x-wire and
one y-wire. Special circuitry then increments the signal count at the correspond-
ing x—y address in the output image.

The MAMA detectors are especially useful at short wavelengths where the
DQE of the device can be very high if it is equipped with a “solar-blind”
photocathode insensitive to visual and infrared photons. Space astronomy has
employed MAMA detectors to great advantage in for the detection of X-rays
and far-ultraviolet light. Although silicon CCDs are also sensitive at these wave-
lengths, they suffer from high sky background levels from starlight and scattered
sunlight that cannot be completely removed by filtering.

8.3.3 Image intensifiers and the ICCD i

An image intensifier is not a detector, but a vacuum device that amplifies the
brightness of an image. Because military interest in night vision drives the
development of intensifiers, the military terminology (Generation I, 1I, mr*
etc.) for different designs has become standard. Figure 8.15 shows a Generation
11 intensifier coupled by optic fibers to a CCD. The intensifier resembles a MCP
PMT, but it has a phosphor screen instead of an anode. A photoelectron leaving
the cathode produces a pulse of high-energy electrons that excites multiple
molecules in the phosphor. These then de-excite by photo-emission. The loca-
tion of the phosphor emission maps the location of the original photo-absorption
on the cathode. A single input photon can generate 10* to 107 phosphor photons.

As shown in Figure 8.15, an intensifier can be a useful first stage for an array
detector like a CCD. It is important to understand, however, that although an
intensifier will vastly increase signal strength and decrease exposure times, it
will always decrease the input SNR for the CCD.

For example, consider a source that produces N photons at the photo-cathode
of an image intensifier during an integration. If the input is dominated by photon
noise (assume background is negligible) then the uncertainty in the input signal
is just v/N;. The intensifier output at the phosphor is

Now = gNi

where g is the gain factor of the intensification. The variance of Nout is therefore

0,2

out

= ol + N = (¢ + M)

Here o, is the uncertainty in the gain. Thus, the SNR at the input and output are

4 Generation [ devices (now obsolete) used electric or magnetic fields to accelerate photoelectrons
from a cathode and then re-focus them directly onto the phosphor. Generation II and I1I devices
use an MCP to form the image as described in the text. Generation III devices have advanced
photocathodes sensitive in the NIR.

8.4 Infrared arrays
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So long as intensifier gain is uncertain, intensification will degrade the SNR.

Intensified CCDs (ICCDs) are thus useful in situations where the primary
noise source is NOT photon noise in the signal, and/or where rapid signal
changes need to be monitored. In such cases (e.g. read noise or dark-current
noise dominant), using an intensifier can improve the DQE of the entire device
by decreasing the required exposure times.

A related use for the image intensifier is as a signal conditioner for a CCD —
the image on the phosphor is not only brighter than the one that arrives at its
photo-cathode, it also emits photons of a different wavelength. You can select a
cathode sensitive to ultraviolet light, for example, and a phosphor that emits
near the CCD QE peak in the red. The ICCD thus detects sources that it would
find absolutely invisible without the intensifier.

8.4 Infrared arrays

Although modern CCDs in some respects approach perfection as astronomical
detectors, the large size of the forbidden band gap of silicon means that they
are blind to all light with wavelength longer than 1.1 pm. The development of
infrared-sensitive arrays has faced great technical difficulties, but advances
have come quickly. These advances have had an even greater impact on
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Fig. 8.15 The ICCD. The
photocathode is in the
image plane of the
telescope. The image-
intensifier’'stage
produces an intensified
image at the phosphor,
which is transmitted by a
fiber bundle or lens to the
CCD. A very thin
aluminum film behind
the phosphor screen
increases forward
transmission and
reduces the chance that
light from the phosphor
will feed back to the
photocathode. Instead of
the fiber coupler, a
system of lenses can
transfer the image from
the phosphor to the CCD.
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infrared astronomy than the CCD has had in the optical. This is because prior
to the CCD, optical astronomers had an excellent, although inefficient, multi-
pixel detector — the photographic plate. Prior to infrared arrays, infrared
astronomers had only single-pixel devices. Different wavelength regions in
the infrared place different demands on detector technology. We first make a
brief survey of these differences, then examine the general method of infrared
detector fabrication. Chapter 6 of Glass (1999) gives a general qualitative
discussion of infrared technology, and chapter 11 of McLean (2008) gives a
more technical treatment.

8.4.1 Detectors at different wavelengths i

In the near infrared (1-5 pm; J, H, K, L, and M bands) practical arrays for
astronomy first appeared at observatories in 1986. Although a number of mate-
rials were tried, the most successful eventually proved to be arrays of junction
diodes made of indium antimodide (InSh — often pronounced “ins-bee”) or
HgCdTe (mercury—cadmium telluride, or MCT). The initial arrays contained
only a few pixels but, by 2009, manufacturers were producing 2048 X 2048 pixel
buttable arrays, and astronomers were assembling infrared-sensitive mosaics
that were only an order of magnitude smaller (70 megapixels) in size than
contemporary CCD-based devices. Modem NIR arrays have QE values less than
70%, read noise levels less than 10 electrons, and dark currents below 0.1
electrons per second.

In the MIR (5-28 pm) progress has been more modest, partly because high
background levels limit ground-based observing at these wavelengths. At
even the best sites in the MIR, the atmosphere is marginally transparent only
in the N band (8—13 pm) and, to a lesser extent, the Q band (17—28 pm) so
that any useful observations require a very large telescope or an orbiting
observatory like Spitzer. At present, the most advanced MIR arrays are of
blocked-impurity-band (BIB) photoconductors, usually fabricated from
silicon doped with antimony (Si:Sb) or arsenic (Si:As). As of 2009, arrays
in a 1024 X 1024 pixel format have begun to appear at the world’s largest
telescopes. Arrays of Schottky photodiodes (with PtSi as the metal layer) are
easier to fabricate and have seen some use, but are limited by poor quantum
efficiency.

In the far infrared (25350 pum) the Earth’s atmosphere is completely opaque
(there is a weak and erratic window at 40 mm at high-altitude sites). Far-infrared
detectors, therefore, must be flown in spacecraft or very high-altitude aircraft. In
general, extrinsic detector arrays have been the most useful in this region. Doped
silicon with the smallest band gap, Si:Sb, has a cutoff wavelength at around
30 um, so for longer wavelengths, extrinsic germanium has been used. The Spitzer
Space Telescope, for example, carries 32 X 32 pixel arrays of Ge:Ga (cutoff near

8.4 Infrared arrays

115 pm) and a 2 X 20 stressed’ Ge:Ga array (cutoff near 190 pum). Mosaics of
Spitzer-sized devices are under construction. For even longer wavelengths,
observers have used small arrays of bolometers (discussed in a later section).

8.4.2 Infrared detector construction

Building an infrared array of photon detectors of any of the types discussed
above is different from building a CCD in an important way. Charge-coupled
devices are based on a mature technology. Buoyed by the ballooning market in
computers and consumer electronics over the past forty years, manufacturers
have refined their skill in the fabrication of electronic components in intrinsic
silicon and devices based on p—n junctions in silicon. Expertise with more
difficult materials like InSb, MCT, and extrinsic silicon and germanium is
limited in comparison. That infrared arrays exist at all is due in large part to
their applicability to battlefield imaging, surveillance, and remote sensing.
Because building electronics is so much easier in silicon, almost all modern
infrared arrays are built as two-layer hybrids: one layer is composed of the
infrared-sensitive material, the other, made of silicon, provides the electronics
for reading the signal.

Figure 8.16 sketches some of the details in the construction of two pixels of a
NIR hybrid array. The light-sensitive elements are junction photodiodes made
of MCT — that is, the alloy Hgq — »Cd,Te. The MCT has an adjustable cutoff
wavelength, and although it has appeared primarily in NIR detectors, it is a
potentially useful material at longer wavelengths.® 256 X 256 Arrays of this
design were installed in the NIR camera and multi-object spectrograph (NIC-
MOS) of the Hubble Space Telescope. Successors to the NICMOS array (first
the PICNIC and then the HAWAII arrays manufactured by Rockwell Scientific
Corporation) have grown to 2048 X 2048 size.

The figure illustrates a cross-section of two pixels. The top layer is the silicon
readout array, which contains several CMOS field-effect transistors (MOS-
FETs) at each pixel. The lower layer contains the infrared-sensitive material —
in this case a p—n photodiode at each pixel. The total thickness of the MCT is

% Creation of a majority carrier in p-type material requires breaking an atomic bond and remaking it
elsewhere (movement of an electron from the valence band to an acceptor state). It is easier to do
the bond breaking (it takes less energy) if the crystal is already under mechanical stress. Thus, the
cutoff wavelength of a stressed p-type crystal is longer than for an unstressed crystal. Maintaining
the proper uniform stress without fracturing the material is a delicate operation. _

® The pure form of HgTe behaves like a metal, while pure CdTe has a band gap of 1.6 eV. The band
gap of the Hg(; _ o(CdTe), alloy depends on x, the cadmium telluride fraction, and is 0.31eV
(cutoff at 4pm) at x = 0.35 and 0.1eV (cutoff at 100pm) at x = 0.17. So far, cutoff wavelengths
longward of 20pm have been difficult to achieve, but new techniques such as lattice fabrication
by means of molecular beams may permit manufacturers to make low-x MCT of the required
uniformity.
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Fig. 8.16 Cross-section of
two pixels of a hybrid
array of MCT
photodiodes. Each diode
connects to the silicon
readout circuits through
an indium bump
conductor.
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quite small, and it is grown or deposited on a transparent substrate, like sapphire,
to provide mechanical strength. Initially, the two layers are manufactured as
separate arrays. A small bump of the soft metal indium is deposited on the
output electrode of each photodiode. A matching bump of indium is deposited
on the corresponding input electrode of each silicon readout circuit. The silicon
and the infrared-sensitive arrays are then matched pixel-to-pixel and pressed
together, so the indium bumps compress-weld against their mates to make good
electrical contact. The spaces between bumps can then be filled with epoxy to
secure the bond.

There are obvious and not-so-obvious pitfalls in making arrays using this
“bump-bonding™ approach, but the technique is becoming mature. Neverthe-
less, NIR arrays remain considerably more expensive than CCDs of the same
pixel dimensions.

Reading an infrared array differs fundamentally from reading a CCD. There
is no pixel-to-pixel charge transfer: each pixel sends output to its individual
readout integrated circuit (ROIC) in the silicon layer. Since one of the tasks of
the silicon layer is to organize the multiple signals from all pixels into a single
stream of data from the amplifier, the layer is often called the multiplexer or
MUX. Many multiplexers, especially in large arrays, read to several (usually
two or four, but sometimes many more) data lines simultaneously. Important
differences from CCDs include:

e Since a pixel does not have to (nor is it able to) pass charge to and from its neighbors, a
“dead” pixel (caused, for example, by a failure in the bump bond) will not kill the
entire upstream column, as it might in a CCD. Although saturation occurs, the “bloom-
ing” penalty present in CCDs is not a feature of infrared arrays.

e Since readout is separate from sensing, reads can be non-destructive, and the same
image read several times. Moreover, the array can be read out while the infrared layer
is still responding to light.

8.5 Thermal detectors

e Very high background levels invariably hamper infrared observations from the ground.
This forces very short (0.1-10 seconds) integration times to avoid saturation. To cope
with the resulting data rate, controllers often co-add (average) many of the short
exposure images and save only that result.

o Many infrared sensors are somewhat non-linear, so calibration for linearity is a much

greater concem with an infrared array than it is with a CCD.

Because of the smaller band gaps involved, dark currents in infrared arrays can be a

severe problem, and these detectors must operate at low temperatures. Although some

NIR arrays work well with liquid-nitrogen cooling, MIR arrays require refrigeration to

much lower temperatures.

o Any detector sensitive to wavelengths longer than about 5 pm requires a cold enclosure
to shield it from the infrared light flooding in from its warm (and therefore glowing)
surroundings. These hot surroundings include the telescope structure and optics, so
space telescopes that can be kept cold are superior infrared observing platforms. For
similar reasons, the secondary mimrors of ground-based infrared telescopes are
designed to be as small as possible. In the FIR, even the readout circuits are heat

sources that need to be isolated from detectors.

8.5 Thermal detectors

Thermal detectors do not depend upon photons to move charge carriers directly
from one band to another. They work, rather, as two-element devices: (1) a
thermometer, which senses the temperature increase produced in (2) an absorber,
when the latter is exposed to an incoming light beam. Figure 8.17 sketches a
generalized thermal detector. In the figure, a heat sink at temperature T, enc-
loses the absorber and thermometer in an evacuated cavity. A strip of material
with conductance G connects the absorber and heat sink. To make an observa-
tion, the shutter is opened and the incoming light is allowed to deposit energy n
the absorber at rate Pi,. After a time, the temperature of the absorber will
increase by amount AT, a quantity that therefore measures Pin.

For example, if the absorber were allowed to reach equilibrium with the
shutter open, the following condition will apply:

Pin = Pout = Pconduct T Pmdiatc
~ GAT + o4 [(To + AT)4—T3]

- A]Z{G + o [4Tg + 6T2AT + 4Ty(AT)? + (AT)3]} (83)
= AT{G + 0AR(To)} = ATG'

In this equation, 4 is the total surface area of the absorber, and ¢ is Stefan’s
constant. We assume the solid angle subtended at the absorber by the shutter
opening is small. To maximize the sensitivity, which is just AT /Pin, the term in
braces in the final expression must be kept as small as possible. To this end, it is
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Fig. 8.17 General design
for a thermal detector. A
thermometer records the
increase in the
temperature of a light-
absorber after it is
exposed to a source. A
strip of conducting
material links the
absorber to a large heat
sink. Because it may
require power to operate,
the thermometer may
contribute to P;,.
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clear that both the conductance of the link and the area of the absorber should be
small. Likewise, especially since it appears to the third power, the temperature
of the sink, Ty, needs to be kept very low. An additional benefit of low temper-
ature is that if the conductance term is large relative to the radiative term, the
effective conductance, G', in W K™ !, will be nearly constant. Although it is not
addressed in the equilibrium expression above, keeping the heat capacity of the
absorber small will mean that the response time of the detector is short. The
time dependence will be given by

AT(t) = Ty + %[1 — exp(—1G'/C)] (8.4)

Here Cis the heat capacity of the detector in JK ™' and the time constant is C/G’.
In general, a thermal detector will employ an absorber that is black, with a small
heat capacity. Physical size should be as small as possible, matching the size of
the focal-plane image but not approaching the scale of the wavelength being
observed. The absorber will be linked to a temperature sink that is kept as cold
as possible (often, for example, with liquid helium).

In practice, the thermal detectors used in astronomy have almost always
been bolometers, defined as thermal detectors in which the temperature sensor
is a thermistor (a contraction of the words thermal and resistor), a small mass
of semiconductor or metal whose electrical conductivity is a strong function of
temperature. The small signal levels usually characteristic of astronomical
measurements have restricted instruments to just a few thermistor materials:
extrinsic silicon has been used, but n-type extrinsic germanium (doped with
gallium) is the most common choice. The gap between the donor states and the
conduction band in Ge:Ga is around 0.01 €V, so a modest increase in temper-
ature will excite donor electrons to the conduction band and decrease the
resistance of the thermistor. As in any semiconductor with a band gap, the

8.5 Thermal detectors

resistance as a function of temperature will be given by an equation of the
form

R(T) = RoT Pefr (8.5)

where 4 is a constant that depends on the band-gap energy and R, depends on
both the band gap and the doping level.

The situation is somewhat different at temperatures below 5 K, where the
mechanism of thermal excitation of electrons across the gap between donor and
conduction states becomes unimportant. The practice there is to use very highly
doped thermistors, in which conductivity is due to hopping within the impurity
band. Equation (8.5) does not apply in this case, but other semi-empirical
expressions relate a decrease in resistance to an increase in temperature.

Thermistor resistance is usually monitored in a simple circuit in which the
voltage drop across the sensitive material is observed with the thermistor placed
in series with a stable reference resistor, as illustrated in Figure 8.18a. The
reference resistor must be large relative to the bolometer resistance; otherwise
a positive heating feedback can run away in the bolometer.

One simple bolometer design, illustrated in Figure 8.18b, has an elegant
feature — the absorber and the temperature sensor are one and the same element.
The wires that connect this sensor to the conductivity-measuring circuit also
provide the thermal link to the heat sink. Figure 8.18c shows a compound bol-
ometer, in which the thermistor is fastened to a radiation-absorbing plate. Both
these designs can be easily incorporated in a one-dimensional array. Modified
geometries have led to two-dimensional arrays of a few hundred pixels.
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Fig. 8.18 Bolometers. (a)
Electrical characteristics:
a thermistor, whose
electrical resistance
depends on temperature,
is connected in series
with a reference resistor.
Voltage across the
reference changes with
the temperature of the
detector. (b) A bolometer
in which the thermistor is
also the absorber. Here
the electrical lead is also
the thermal link to the
heat sink. Alternatively, in
(c), the thermistor can be
mechanically and
thermally bonded to the
absorber.
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At very low temperatures, a bolometer can employ a type of superconducting
thermistor called a transition edge sensor (TES) to attain very high sensitivity.
See Rieke (2003), chapter 9, for a more detailed discussion of the TES and of
bolometers in general.

Summary

® An important measure of detector quality is the detective quantum efficiency:

pon = SNBee
(SNR)? e

o Characteristics of a detector include its mode (photon, wave, or thermal). Important
detector concepts:

signal noise quantum efficiency (QF)
absorptive QF quantum yield spectral response
spectral resolution linearity saturation

hysteresis stability response time

dynamic range Physical size array dimensions
Nyquist spacing image sampling

e The charge-coupled device, or CCD, is usually the preferred astronomical detector
at visible wavelengths. Concepts:

parallel registers serial register gales

clock voltages barrier potential ADU

output amplifier collection potential CCD gain
blooming channel stop CMOS capacitor
Jull well digital saturation read noise
corrrelated double sampling multi-amplifier arrays dark current
orthogonal-transfer CCD cryogen Dewar
buried-channel CCD (BCCD) CTE traps
multi-pinned phase (MPP) inverted gate L3CCD
[frontside illumination backthinned CCD ITO
deep-depleted CCD open electrode microlens

virtual-phase CCD

e Several important astronomical detectors depend on the vacuum photoelectric
effect. Concepts:

Photomultiplier (PMT)  dynode pulse-counting
microchannel plate MCP PMT MAMA
image intensifier signal conditioner 1ICCD

e Thermal detector concepts:

Exercises

Observational techniques and device performance with infrared arrays is highly

dependent on the wavelength region observed. Concepts:

near-, mid- and far-infrared InSb MCT
BIB detectors Si:Sh NICMOS
HAWAII hybrid array ROIC
MUX indium bump bond

Semiconductor thermistor resistance:

R(T) = RoT Tk

heat sink bolometer
thermistor time constant
Exercises

1.

A photodiode has an overall quantum efficiency of 40% in the wavelength band 500—
600 nm. The reflectivity (fraction of photons reflected) at the illuminated face of the
detector in this band is measured to be 30%. 1f this face is treated with AR coatings,
its reflectivity can be reduced to 5%. Compute the QE of the same device with the
AR coating in place.

A certain detector measures the intensity of the light from a stable laboratory black-
body source. The signal in three identical trials is 113, 120 and 115 mV. From the
blackbody temperature, the experimenter estimates that 10* photons were incident
on the detector in each trial. Compute an estimate for the DQE of the detector.

. A photon detector has a QE of g and a quantum yield of y. The uncertainty in y is

a(p). Show that DQE = g if 6(y) = 0, but that DQE < g otherwise.

. A CCD has pixels whose read noise is 3 electrons and whose dark current is

1 electron per second. The QE of the detector is 0.9. Compute the DQE of a single
pixel if 1000 photons are incident in a 1-second exposure. Compute the DQE
for the same pixel if the same number of photons is incident in a 400-second

cxposure.

. An MOS capacitor observes two sources in the band 400-600 nm. Source A has a

spectrum such that the distribution of photons in the 400-600 nm band is given by
na(2) = 423, Source B has a distribution of photons given by np(4) = BA7? in the
same band. If the two sources generate photoelectrons at exactly the same rate,
compute their (energy) brightness ratio. You may assume the detector’s QE is not

a function of wavelength.

. Construction of a monolithic 8192 X 8192 pixel CCD array is technologically

possible. How long would it take to read this array through a single amplifier at a

pixel frequency of 25 kHz?
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7. The gate structure for four pixels of a certain orthogonal transfer CCD is sketched at
below. Propose a pattern for (2) assigning gate voltages during collection, (b) a
method for clocking voltages for a one-pixel shift to the right, and (c) a method
for clocking voltages for a one-pixel shift downwards. Gates with the same numbers
are wired together.

I 1
4 4
2 2
| 3 I_I 3 I_
I 1
4 4
2 2
g = ||

Gy

8. At an operating temperature of 300 K, a certain CCD exhibits a dark current of 10°
electrons per second. (a) Estimate the dark rate, in electrons per second, if this CCD
is operated at —40 °C (233 K). (b) Compute the operating temperature at which the
dark current will be 10 electrons per second.

9. A CCD has a CTE of “three nines” (i.e. CTE = 0.9990). What fraction of the charge
stored in the pixel most distant from the amplifier actually reaches the amplifier if the
array is (a) 128 pixels on a side or (b) 2048 on a side?

10. A rapid-scan CCD has a read noise of 200 electrons per pixel. You observe a source

* that produces 400 photoelectrons spread over 25 pixels. Dark current and back-
ground are negligible. (a) Compute the SNR for this measurement. (b) Suppose an
image intensifier is available with a gain of 10* and a gain uncertainty of *5%.
Repeat the SNR computation for the intensified CCD. Should you use the bare or the
intensified CCD for this measurement?

11. Consider the general situation in which a bare CCD would record N photoelectrons
with a total read noise of R electrons in a given exposure time. An intensifier stage
has a gain of g and a gain uncertainty of a,. If g >> 1, show that the intensifier will
improve the overall DQE in the same exposure time if R’g* > ag N.

12. A single-element bolometer operates with a heat sink at 12 K. The thermal link has
a conductance of G'=5 X 1077 WK™ ' and a heat capacity of C=3 X 10 8 JK~ g
(a) Compute the time constant and temperature change after 2 seconds of exposure to 2
source that deposits 107! W in the bolometer. (b) If the bolometer is a doped
germanium thermistor’ with a resistance of Ry ohm at 12 K and effective energy gap
of A =0.02eV, compute the fractional change in resistance due to the exposure in (a)-

Chapter 9
Digital images from arrays

All the pictures which science now draws of nature and which alone seem
capable of according with observational fact are mathematical pictures.

— Sir James Jeans, The Mysterious Universe, 1930

Astronomers normally present the output of a sensor array in the form of a
digital image, a picture, but a mathematical picture. One appealing character-
istic of a digital image is that the astronomer can readily subject it to mathe-
matical manipulation, both for purposes of improving the image itself, as well as
for purposes of extracting information.

Accordingly, the chapter will proceed by first presenting some general *

thoughts about array data, and some general algorithms for image manipulation.
Because they are so useful in astronomy, we next examine some procedures for
removing image flaws introduced by the observing system, as well as some
operations that can combine multiple images into a single image. Finally, we
look at one important method for extracting information: digital photometry,
and derive the CCD equation, an expression that describes the quality you can
expect from a digital photometric measurement.

9.1 Arrays

Astronomers usually use panoramic detectors to record two-dimensional
images and, at optical wavelengths, they most often use a charge-coupled
device (CCD). Unlike a photographic plate (until the 1980s, the panoramic
detector of choice), a CCD is an array — a grid of spatially discrete but
identical light-detecting elements. Although this chapter discusses the CCD
specifically, most of its ideas are relevant to images from other kinds of arrays.
These include broadband superconducting tunnel junctions (STJs), hybrid
semiconductor arrays used in the infrared, ultraviolet-sensitive devices like
microchannel plates, and bolometer arrays used in the far infrared and at other
wavelengths.
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Fig. 9.1 Pixels near one
corner of a detector array.
The shaded region
indicates the pixel at

[2, 1], which consists of a
photosensitive region
surrounded by an
insensitive border.

Digital images from arrays

9.1.1 Pixels and response

A telescope gathers light from some astronomical scene and forms an image in
its focal plane. At each point (x}, ') in the focal plane, the image has brightness,
B(x,y’), measured in W m™>. The function B is an imperfect representation of
the original scene. Every telescope has limited resolving power and optical
aberrations. Often a telescope will transmit some parts of the scene more effi-
ciently than other parts, perhaps because of dust on a filter or some structural
obstruction. In addition, some contributions to the brightness of the image do
not originate from the remote source: the background glow from the atmosphere
or (in the infrared) from the telescope, for example.

We introduce a panoramic detector (or focal-plane array) to record this
imperfect image. It is invariably a rectangular array, with Ciements arranged
in Ny columns and Ny rows. We denote the location of an individual detector
element in this array as [x, y], where it will be convenient to restrict x and y to
integer values (running from 1 to Ny and 1 to Ny, respectively). Instead of the
phrase “individual detector element,” we use the word pixel (from “picture
element”).

Figure 9.1 shows a few pixels of some array. The sensitive area of a single
pixel is a rectangle of dimensions Jy, by J,,, and the pixels are separated by
distances dj,, horizontally and d,, vertically. For most direct-imaging devices,
pixels are square (dp, = dp, = d,) and have sizes in the 5-50 pum range. Linear
arrays (N; > N,), sometimes used in spectroscopy, are more likely to employ
oblong pixel shapes.

If dy > &, in either direction, each pixel has an insensitive region whose
relative importance can be measured by the geometric fill factor,

6.6
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For many CCDs 6, = dp, and the fill factor is unity.

= 3— Photo-
y=3 + sensitive
region
y=2— e 5, = L
dT T i |
pa=hiss L I + +
| L L

9.1 Arrays

Our detector lies in the focal plane of the telescope, with the x (for the
detector) and x’ (for the function B) axes aligned. We are free to choose the
origin of the primed coordinate system, so can make the center of a pixel with
coordinates [x, y] have primed coordinates:

X =x-dy

ylzy'dp

The light falling on the pixel [x, y] will have a total power, in watts, of

(x + ]5)5;3
J B(x,)dr'dy ©.1)
(e-5)o0

In Equation (9.1), we use square brackets on the left-hand side_ as a
reminder that the detector pixel takes a discrete sample of the continuous
image B(x, y) and that x and y can only take on integer values. This pixeli'zation
or sampling produces a loss of image detail if the pixel spacing, d,, is less
than half the resolution of the original image. Such undersampling is usually
undesirable.

We expose the pixel to power P[x, y] for a time interval, #. It respon(.is by
producing (in the case of the CCD) a number of photoelectrons. We call FhIS the
photo-response, #o|x, y]. Note that for many photon detectors, including the
CCD, ry[x, y] depends on the number of incident photons, not on tl.le en'erg_y,
tP[x, y]. To complicate matters, the photo-response signal usually r.nlx'es 1nfils—
tinguishably with that produced by other mechanisms (thermal excitation, light
leaks, cosmic-ray impacts, radioactivity, etc. The pixel gives us, not rp [x,y], but
r{x,y|, a total response to all elements of its environment, including P[x, y]; see

(y + %) o

1
[-3)er

Pl,yl = J

Figure 9.2. . '
Although it is convenient to think of the CCD response on the microscopic

level of individual electrons, this may not be the case for other devices. In some
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Fig. 9.2 Production of an
astronomical digital
image
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Fig. 9.3 A CCD image of
the galaxy M51.

Digital images from arrays

arrays, it will be better to regard r|[x, | as an analog macroscopic property like a
change in temperature or conductivity.

9.1.2 Digital Images

Our instrument must communicate a quantification of r[x,y] to the outside
world. In the case of the CCD, the clock circuits transfer charge carriers through
the parallel and serial registers, and one or more amplifiers convert each charge
packet to a voltage (the video signal). Another circuit, the analog-to-digital
converter (ADC), converts the analog video signal to an electronic representa-
tion of an integer number, primarily because integers are much easier to store in
a computer. We symbolize the integer output for pixel [x, y] as R[x, y], its pixel
value. k

The entire collection of all N, X N, integers, arranged as a mathematical
array to echo the column-—row structure of the detector, is R, a digital image.
Sometimes we call a digital image a frame, or an exposure. We use boldface
symbols for an entire array (or image), as in R, and the subscripts in square
brackets to indicate one element of an array (a single pixel value), as in R[x, y].
The digital image, R, is the digital representation of the detector response, r.
The relation between R and r may not be simple.

Digital images are simply collections of numbers interpreted as images, and
they can be produced in a variety of ways — perhaps by scanning and digitizing
an analog image, by an artistic effort with a computer “paint” program or by
any method that assembles an ordered array of numbers. Often, to help interpret
the array, we map the numbers onto a gray-scale or color-scale and form a
pictorial representation.

For example, the “picture” of the nearby galaxy MS51 in Figure 9.3 is a
representation of a digital image in which a grid of squares is colored according
to the corresponding pixel values. Squares colored with 50% gray, for example,
correspond to pixel values between 2010 and 2205, while completely black
squares correspond to pixel values above 4330. A mapping like Figure 9.3
usually cannot show all the digital information present, since pixel values are

9.1 Arrays

often 16-bit integers," while human vision only distinguishes at most a few
hundred gray levels (which code as 7- or 8-bit integers).

9.1.3 CCD Gain

We use some special terminology in the case where image R represents the
response of an astronomical array. Quantifying detector response usually means
measuring a voltage or current (i.e. an analog quantity) and subsequently
expressing this as a digifal quantity. Hence, each pixel of R is said give a count
of how many analog-to-digital units (ADUs) were read from the detector. Each
pixel value, R[x, y], has “units” of ADU. The terms data number (DN) and
counts are sometimes used instead of ADU.

The differential change in r[x, y]that produces a change of one ADU in R[x, y]
is called the gain

glx,y] = gain = :;[[J;ﬁ]

In the general case, gain will differ from pixel to pixel, and may even depend on
the signal level itself. In the case of the CCD, gain is set primarily by the output
amplifier and the ADC, and the astronomer might even set the gain with the
controlling software. We expect approximately identical gain for all pixels.
Moreover, CCD amplifiers are generally linear, so we usually assume gfx, y]
is independent of r[x,y]. The CCD gain has units of electrons per ADU:

g = CCD gain = M [electrons per ADU], independent of r,x and y

dR[x,y]

Gain may differ (by a small amount, one hopes) for each amplifier on a multi-
amplifier CCD chip, or for the components in a mosaic.

9.1.4 Pictures lie

The world today doesn’t make sense, so why should I paint pictures that do?
— Pablo Picasso (1881-1973)

Figure 9.3, the gray-scale map of a CCD image of the galaxy M51, imperfectly
represents R, the underlying digital image. But even the underlying image is a
lie. There are interstellar, atmospheric, and telescopic effects that mask, distort,
and destroy information as light travels from M51 to the detector, as well as
additions and transformations introduced by the detector itself —all information

! The number of bits (binary digits), 7, in 2 computer memory location determines the value of the
largest integer that can be stored there. (It is 2”2 — 1.) Thus, a 16-bit integer can have any value
between 0 and 65,535, while an 8-bit integer can have values between 0 and 255.
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Fig. 9.4 Additive (ADD),
multiplicative (MUL) and
non-linear (Non-Lin)
effects produce
imperfections in detector
output. Alterations by
optics include intentional
restrictions by elements
like filters. The local
environment may add
signal by introducing
photons (e.g. light leaks)
or by other means (e.g.
thermal dark current,
electronic interference,
cosmic rays).
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gains and losses that we would rather not have. Figure 9.4 schematically rep-
resents the most obvious elements that might influence the raw digital image.

For the moment, imagine a “perfect” digital image, R*. In R*, the number of
ADUs in a pixel is directly proportional either to the energy or number of
photons arriving from the source located at the correspondiug direction in the
sky. The image R* is not influenced by any of the elements represented in
Figure 9.4. Mathematically, three kinds of processes can cause R, the raw
image, to differ from R*, the perfect image:

Additive effects contribute or remove ADUs from a pixel in a way that is
independent of the magnitude of R*[x, y]. Examples include:

e background radiation emitted by the tclescope, the Earth’s atmosphere, foreground or
background stars, or any other objects visible to the pixel;

e impacts of cosmic rays and other energetic particles;

e the ambient thermal energy of the pixel;

e a voltage intentionally added to the video signal to guarantee amplifier linearity.

Multiplicative imperfections change R*[x, y] to a value proportional to its
magnitude. Examples include:

e spatial or temporal variations in quantum efficiency or in gain;

e absorption by the Earth’s atmosphere;

e absorption, reflection, or interference effects by optical elements like filters, windows,
mirrors and lenses, as well as dirt on any of these

Non-linear imperfections change R*[x, y] to a value that depends on a qua-
dratic or higher power of its magnitude. An example would be a quantum
efficiency or gain that depends on the magnitude of R*[x, y]. Saturation, a
decrease in detector sensitivity at high signal levels, is a common non-linear
imperfection.

All these imperfections are least troublesome if they are flar, that is, if they
have the same effect on every pixel. Subtracting a spatially uniform background
is relatively easy. In contrast, if the imperfection has detail, removing it requires
more work. Subtracting the foreground stars from an image of a galaxy, for
example, is relatively difficult. Not every imperfection can be removed, and
every removal scheme inevitably adds uncertainty. No image ever tells the
complete truth.

9.2 Digital image manipulation

9.2 Digital image manipulation

If a man’s wit be wandering, let him study the mathematics.
— Francis Bacon (1561-1626)

One of the great benefits of observing with modern arrays is that data take the
form of digital images — numbers. Astronomers can employ powerful and
sophisticated computing tools to manipulate these numbers to answer ques-
tions about objects. We usually first find numerical answers, but eventually
construct a narrative answer, some sort of story about the object. Our concem
in the remainder of this chapter is to describe some of the computational and
observational schemes that can remove the imperfections in astronomical
images, and some schemes that can reduce those images to concise measure-
ments of astronomically interesting properties. We begin with some simple

rules.

9.2.1 Basic image arithmetic

First, some conventions. As before, boldface letters will symbolize complete
digital images: A, B, C, and D, for example, are all digital images. Plain-faced
letters, like A and k, represent single-valued constants or variables. As intro-
duced earlier, indices in square brackets specify the location of a single pixel,
and A4 [2,75] is the pixel value of the element in column 2, row 75, of image A.

If {op} is some arithmetic operation, like addition or multiplication, then the

notations

A=B{op} C
A=k {op} D

mean that

Alx,y] = Blx,y] {op} Clx,y), and
Alx,y] = k {op} Dlx,y},
for all indices, 1 <x < Nyand1 <y < Ny

That is, the indicated operation is carried out on a pixel-by pixel basis over the
entire image. Clearly, all images in an equation must have the same size and
shape for this to work. For example, suppose you take an image of Mars, but, by
mistake, leave a lamp on inside the telescope dome. The image actually
recorded, as depicted in Figure 9.5, will be

A=M+L

where M is the image due to Mars alone and L is the image due to the lamp and
everything else. You might be able to obtain a good approximation to L by
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Fig. 9.5 Image
subtraction. The image in
(a) is of the planet Mars
plus background and
foreground illumination
(M+L). TheimageL in
(b} is of the blank sky at
the same altitude and
azimuth, obtained after
sidereal motion took
Mars out of the field. The
image in (c) is the
difference between the
two.

Y_ 4
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leaving the lamp on and taking an image of the blank sky. If so, as shown in the
figure, you can computationally recover M:

M=A-L

9.2.2 Image dimensions and color

We find it natural to think of digital images as two-dimensional objects —
brightness arrayed in rows and columns. But a digital image is just a way to
interpret a string of numbers, and there are many cases in which it makes sense
to think of images with three or more dimensions. For example, you take a series
of 250 images of the same star field to search for the period of a suspected
variable. Each image has 512 rows and 512 columns. It makes sense to think of
your data as a three-dimensional stack, with dimensions 512 X 512 X 250. You
will therefore encounter terms like data cube in the astronomical literature.
Another common example would be the output of an array of STJ detectors,
where spectral distribution would run along the third dimension. Higher dimen-
sions also make sense. Suppose you take 250 images of the field in each of five
filters — you then could have a four-dimensional “data-hypercube.” We will not
discuss any special operations for these higher-dimensional objects. How they
are treated will depend on what they represent, and often will come down to a
series of two-dimensional operations.

Color images are a special case. Digital color images pervade modern cul-
ture, and there are several methods for encoding them, most conforming to the
device intended to display the image. For example, each pixel of a color com-
puter monitor contains three light sources: red (R), green (G), and blue (B). The
RGB color model represents an image as a three-dimensional stack, one two-
dimensional digital image for each color. Each pixel value codes how bright the
corresponding colored light source should be in that one pixel. The RGB is an
additive color model: increasing pixel values increases image brightness.

Subtractive color models are more suited to printing images with ink on a white
background. The most common, the CMYK model, uses a stack of four two-dimen-
sional images to represent amounts of cyan, magenta, yellow, and black ink in each
pixel. In a subtractive model, larger pixel values imply a darker color.

9.2 Digital image manipulation

Astronomers almost never detect color images directly, but will frequently
construct false color images as a way of displaying data. For example, you
might create an RGB image in which the R channel was set by the pixel values
of a K-band (i.e. infrared) image, the G channel was set by the pixel values of a
V-band (i.e. visual) image and the B channel was set by the pixel values of a far-
ultraviolet image. The resulting image would give a sense of the “color” of the
object, but at mostly invisible wavelengths.

Astronomers also use color mapping to represent the brightness in a simple
digital image. In a color mapping, the computer uses the pixel value to reference a
color look-up table, and then displays the corresponding color instead of some
gray level. Since the eye is better at distinguishing colors than it is at distinguishing
levels of gray, a color map can emphasize subtle effects in an image.

9.2.3 Image functions

We expand our notation to include functions of an image. In the following
examples, each pixel in image A is computed from the pixels with the same
location in the images in the right side of the equation:

= —2.51log(C)
A = h(B)* + kV/C
A = max(B, C, D)
A = median(B, C, D)

The “max” function in the third example would select the largest value from the
three pixels at each x, y location:

Alx,y] = the largest of {B[x,], C[x,»], Dlx, ]},

for each x and y in A.

Likewise, the fourth example would compute the median of the three indi-
cated values at each pixel location. We can think of many more examples. We
also introduce the idea of a function that operates on an entire image and retumns
a single value. For example, the functions maxP and medianP:

a = maxP(A)
b = medianP(A)
will treat the pixels of image A as a list of numbers, and pick out the largest

value in the whole image and the median value of the whole image, respectively.
Again, you can think of a number of other examples of functions of this sort.

9.2.4 Image convolution and filtering

The concept of digital filtration is a bit more complex. Image convolution is an
elementary type of digital filtration. Consider a small image, K, which measures
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Fig. 9.6 Image
convolution operation.
The kernel is aligned over
a set of pixels in the
original centered on
position x, y. The result is
the sum of the products
of each kernel pixel with
the image pixel directly
beneath it. The result is
stored in pixel x, y of the
filtered image.
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2V + 1 rows by 2 + 1 columns (i.e. the number of rows and columns are both
odd integers). We define the convolution of K on A to be a new image, C,

C=conv(K,A) = K® A
Image C has the same dimensions as A, and its pixels have values

(2V+1) 2W+1)
C[xvy] 5 Z Z K[l,j]A[(X* Vo= i): 0"7 w1 +_/)] (92)
=1 =1
The array K is sometimes called the kernel of the convolution. For example,
consider the kernel for the 3 X 3 boxcar filter:

111
1 11
I 1 1

Figure 9.6 suggests the relationship between the kernel, the original image, and
the result. (1) The center of the kernel is aligned over pixel [x, ¥] in the original
image. (2) The value in each pixel of kernel is multiplied by the value in the
image pixel beneath it. (3) The sum of the nine products is stored in pixel [x, y]
of the filtered image. (4) Steps (1)—(3) are repeated for all valid values of x and y.

Figure 9.7 shows an image before and after convolution with a boxcar filter.
What happens in the convolution is that every pixel in the original image gets
replaced with the average value of the nine pixels in the 3 X 3 square centered on
itself. You should verify for yourself that this is what Equation (9.2) specifies.
The boxcar is a filter that blurs detail — that is, it reduces the high spatial
frequency components of an image. Figure 9.7c shows that a larger-sized boxcar
kernel, 7 X 7, has an even greater blurring effect.

Note that in convolution, there is a potential problem at the image edges,
because Equation (9.2) refers to non-existent pixels in the original image A. The
usual remedy is artificially to extend the edges of A to contain the required

Ol~ Ol— o|—

O|— Bl— O|—

Ol— Ol— O
| -

Filtered
image
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pixels, typically setting the value of each fictitious pixel to that of the nearest
actual pixel.

Convolutions that blur an image are called low-pass filters, and different
kernels will blur an image in different ways — a Gaussian kernel (whose values
are set by a two-dimensional Gaussian function) can simulate some atmospheric
seeing effects, for example. Other kernels are high-pass filters, and emphasize
image detail while suppressing large-scale (low spatial frequency) features.
Representative of these is the Laplacian kernel. The 3 X 3 Laplacian is

-1 -1 -1
-1 8 -1
-1 -1 -1

It essentially computes the average value of the second derivative of the intensity
map — enhancing pixels that differ from the local trend. Figure 9.8 shows
an example. Other filter kernels can produce image sharpening without loss
of large-scale features, edge detection, gradient detection, and embossing effects.

A particularly useful filtering process is unsharp masking. The filtered
image is the original image minus an “unsharp-mask” image — this mask is a
low-pass filtered version of the original. The unsharp mask enhances the high-
frequency components and reduces the low-frequency components of the image,
emphasizing detail at all brightness levels. Since convolution is distributive,
unsharp masking can be accomplished by convolution with a single kernel. For
example, convolution with the 5 X 5 identity kernel

—
Il
coooo

coc oo
co =00
coo oo

cooo

0 0

leaves the image unchanged. Convolution with a 5 X 5 Gaussian (¢ = 1.25
pixels)

0.03 008 0.11 008 0.03

. |o08 021 020 021 o008
G=—|011 029 038 029 0.11
3581008 021 029 021 0.08
0.03 0.08 0.11 008 0.3

creates a blurred mask. An unsharp masking filtration operation would be
C=2(18A)-G®A
or, using the distributive properties of the convolution operation,
C=Q21-G)®A=F®A

In this example,
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Fig. 9.7 Boxcar filter. (a) A
CCD image of a few stars
in the cluster M67,
displayed as a negative
gray-scale (stars are
black). (b) The previous
image convolved with a
3X3 boxcar. The
smoothing effect is most
obvious in the sky
background. {c) The image
in (a) convolved with a 7X7
boxcar.
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Fig. 9.8 Digital filtration.
(a) Image of M51. Full
width at half-maximum
(FWHM) of the star images
is about 2 pixels. (b) After
application of a 7-pixel
FWHM Gaussian filter to
(a). (c) The original after
application ofab X 5
Laplacian filter, which
emphasizes features like
stars and the higher-
contrast spiral features.
Note that sky noise is also
enhanced. (d) After
application of an unsharp
mask based on the
Gaussian in (b).
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Other forms of filtration are not convolutions as defined by Equation (9.2), but
do utilize the idea illustrated in Figure 9.6 — the value of a pixel in the filtered
image is determined by applying some algorithm to the neighboring pixels as
described by a kernel. For example, a 3 X 3 local-median filter sets the filtered
pixel value equal to the median of the unfiltered pixel and its eight neighbors.
Other examples use conditional operators: you might map the location of suspi-
cious pixels by computing the statistics, include the sample standard deviation,
s, inside a 9 X 9 square surrounding a pixel, then apply the operation:

if the original pixel differs from the local mean by more than 3s,
then:

set the value of the filtered pixel to zero,

otherwise:

set the value of the filtered pixel to one.

Any digital filtration destroys information, so use it with caution.

9.3 Preprocessing array data: bias, linearity, dark,
flat, and fringe ‘

When astronomers speak of data reduction, they are thinking of discarding and
combining data to reduce their volume as well as the amount of information they
contain. A single CCD frame might be stored as a few million numbers —a lot of
information. An astronomer usually discards most of this. For example, he may
only care about the brightness or position of a single object in the frame —
information represented by just one or two numbers. Ultimately, he might
reduce several hundred of these brightness or position measurements to deter-
mine the period, amplitude, and phase of a variable star (just three numbers and
their uncertainties) or the parameters of a planet’s orbit (six numbers and six
uncertainties).

Few astronomers enjoy reducing data, and most of us wish for some autom-
aton that accepts what we produce at the telescope (raw images, for example)
and gives back measurements of our objects (magnitudes, colors, positions,
chemical compositions). In practice, a great deal of automation is possible,
and one characteristic of productive astronomy is a quick, smooth path from
telescope to final measurement. The smooth path is invariably paved with one or
more computer programs working with little human intervention. Before using
or writing such a program, the astronomer must get to know his data, understand
their imperfections, and have a clear idea of what the data can or cannot reveal.

9.3 Preprocessing array data

Eventually, data reduction permits data analysis and interpretation — for exam-
ple, what kind of variable star is this, what does that tell us about how stars
evolve? Properly, the boundaries between reduction, analysis, and interpretation
are fuzzy, but each step towards the interpretation stage should become less
automatic and more dependent on imagination and creativity.

The first and most automatic steps remove the most obvious imperfections.
Data should characterize the astronomical source under investigation, not the
detector, telescope, terrestrial atmosphere, scattered light, or any other perturb-
ing element: This section examines the very first steps in reducing array data,
and explains reductions that must be made to all CCD data (and most other array
data), no matter what final measurements are needed. Other authors sometimes
refer to these steps as the calibration of the image. I prefer to separate these
steps into the preprocessing and then de-fringing of the image.

Consider, then, a raw image, R. Of the many imperfections in R, preprocessing
attempts to correct for:

o Bias. If a detector is exposed to no light at all, and is given no time to respond to
anything else in its environment, it may nonetheless produce positive values for a
particular pixel, R[x, y], when it is read out. In other words, even when r[x, y], the
response of the detector, is zero, R[x, y], is not. This positive output from a zero-time
exposure is called the bias level, or the zero level, and will be present in every frame as
a quantity added to the output.

e Dark response. If a detector is not exposed to a signal from the telescope, but simply
sits in the dark for time ¢, it will in general respond to its dark environment so that
r[x, y] is not zero. In most detectors, this dark response is the result of thermal effects.
In a CCD, electron—hole pairs are created from the energy present in lattice vibrations

T°? exp(—a/kT), where a is a constant that depends on the size

at a rate proportional to
of the band gap. Like the bias, the dark response adds ADUs to the readout of every
frame. Unlike the bias, dark response will depend on exposure time.

o Linearity. The response of a linear detector is directly proportional to incoming
signal. All practical detectors are either completely non-linear or have a limited range
of linearity. One of the appealing characteristics of CCDs is the large range of signal
over which their response is linear. Even CCDs, however, saturate at large signal
levels, and eventually cease to respond to incoming photons.

o Flat field response. Identical signals generally do not produce identical responses in
every pixel of a detector array. Not all pixels in the array respond to light with equal
efficiency. This defect can arise because of structural quantum-efficiency differences
intrinsic to the array. It can also arise because of vignetting or other imperfections in
the optical system like dust, fingerprints, and wildlife (insects turn up in ﬁnexpected
locations) on filters or windows.

The observer wants to remove these instrument-dependent characteristics
from her images in preprocessing. To do so, she must make some reference
observations and appropriate image manipulations. We consider each of the four
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preprocessing operations in turn. The books by Howell (2006) and by Martinez
and Klotz (1998) treat CCD data reduction in greater detail.

9.3.1 Bias frames and overscans

If the observer simply reads her array with zero integration time (actually, the
CCD first clears, then immediately reads out), never exposing it to light, she has
obtained a bias frame. The bias frame represents the electronic background
present in every frame, no matter how short the integration time. The idea, of
course, is that this is uninteresting information, and the astronomer needs to
subtract the bias frame from every other frame she plans to use. In practice, one
bias frame may well differ from another. For larger CCD arrays readout time
may be long enough for much to happen, including cosmic-ray hits, local radio-
activity, and electronic interference.

It is good practice to obtain many bias frames. For one thing, properly
combining several frames will reduce uncertainty about the average level of
the bias, as well as minimize the influence of cosmic-ray events. For another, the
careful observer should monitor the bias level during an observing run, to guard
against any drift in the average level, and to make sure any two-dimensional
pattern in the bias is stationary.

Assume for the moment that the bias does not change with time, and that
the astronomer takes N bias frames during the run. Call these z,,2,,...,zy.
How should he combine these frames to compute Z, the one representative
bias image he will subtract from all the other frames? Here are some possi-
bilities:

(1) Mean. Set Z = mean(z(,2;,...,Zy)

This is a bad strategy if there are any cosmic-ray hits. Computationally easy,
it will dilute the effects of cosmic rays, but not remove them.

(2) Median. Set Z = median(z;,2;, ... ,Zy)

This works well, since the median is relatively insensitive to statistical out-
liers like the large pixel values generated by cosmic rays. It has the disadvantage
that the median is a less robust and stable measure of central value than the
mean, and is thus somewhat inferior for those pixel locations not struck by
COSMIC rays.

(3) Indiscriminant rejection. At each [x, y], reject the largest pixel value, then use (1)
or (2) on the remaining (N — 1) values.

This removes cosmic rays, but is possibly too drastic, since it skews the
central values towards smaller numbers. An alternative is to reject both the
largest and the smallest values at each location. This discards two entire images
worth of data, and skews cosmic-ray pixels to slightly larger numbers.
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(4) Selective rejection. At each [x, y], reject only those pixels significantly larger than
the mean, then apply (1) or (2) on the remaining values. To decide whether or not a
pixel value is so large that it should be rejected, use a criterion like:

zi[x,y] > ulx,y] + kalx,y]

where u and ¢ are the mean and standard deviation of the pixel values, (a) at x,
y, or (b) over a segment of the image near x, y, or (c) over the entire image. The
value of the constant k determines how selective the rejection will be. For a
normal distribution, k= 3 will reject 14 legitimate (non-cosmic-ray) pixels out
of 10,000.

This is an excellent strategy, but is computationally intensive. Strategy 4b or
4c makes it possible to produce a “clean” Z from a single frame by replacing
the rejected pixel value with the mean or median value of its neighbors.

You will undoubtedly think of other advantages or disadvantages to all these
strategies, and also be able to compose alternatives. The exact strategy to use
depends on circumstance, and we will use the notation

Z. = combine(zy, 2, . . . ,Zy)

to indicate some appropriate combination algorithm.

What if the bias changes over time? The astronomer might compute different
Z. values for different segments of the run, but only if the changes are gradual. A
common alternative strategy for CCDs is to use an overscan. You produce
overscan data by commanding the clocks on the CCD so that each time the
serial register is read, the read continues for several pixels after the last physical
column has been read out. This produces extra columns in the final image, and
these contain the responses of “empty,” unexposed pixels, elements of the serial
register that have not been filled with charge carriers from the parallel registers.
These extra columns are the overscan region of the image and record the bias
level during the read. The usual practice is to read only a few extra columns, and
to use the median pixel values in those columns to correct the level of the full
two-dimensional Z image. If «; is the overscan portion of image #, and Q) is the
overscan portion of the combined Z, then the bias frame to apply to image i is

Z; = Z + (medianP(w; — Q7)) (9-4)

Figure 9.9 shows a slightly more complicated application of an overscan.
Here the zero level has changed during the read, and shows up in the image most
clearly as a change in background in the vertical direction. To correctly remove

% It is also possible to continue to read beyond the last exposed row. This means the overscan of
extra rows will include the dark charges generated during the full read time. For arrays operating
with significant dark current, this may be significant. Some manufacturers intentionally add extra
physical pixels to the serial register to provide overscan data.
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Fig. 9.9 Overscan
correction. (a) This frame
has a 10-column
overscan region on its
right edge. The frame in
{b) results after the bias
frame, corrected for the
overscan, is subtracted
and the overscan section
trimmed from the image.
Note that the frame in (b)
is displayed with a
different gray-scale
mapping than in (a).
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the bias, the astronomer fitted a one-dimensional functionl( in the y-direction) to
the difference (w; — Qz), and added that function to Z. ~

9.3.2 Dark current

Even in the absence of illumination, a detector will generate a response during
integration time £ This is called the dark response. The rate at which the dark
response accumulates is the dark current. Although primarily a thermal effect,
dark current will not be the same for every pixel because of inhomogeneities in
fabrication. Some pixels, called “hot” pixels, differ from their neighbors not in
temperature, but in efficiency at thermal production of charge carriers.

To calibrate for dark current, a long exposure is taken with the shutter
closed — this is called a dark frame, d. In view of the earlier discussion about
cosmic-ray hits and uncertainties, it is best to combine several individual dark
frames (dy, ds, ..., d,) to produce one representative frame:

d = combine(d,, dy, ..., dy)

The dark frames should be obtained in circumstances (temperature, magnetic
environment) as similar as possible to those prevailing for the data frames. If d
has exposure time ¢, then you may compute the dark rate image as

_d-Z
t

D

or

1
D= ?combine([dl et Zl], [d2 — Zz], Soon [dM bt ZM])

The second form applies if you are using an overscan correction for each dark
frame as in Equation (9.4). You may then correct for dark current and bias on
every data frame by subtraction of the image /D + Z. The units for D in the
above equations are ADUs per second. However, dark current for CCDs is
almost always quoted in units of electrons per second as D, = gD, where g is
the detector gain in electrons per ADU.
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(b}
AR, (1)

Linear

Observers routinely cool detectors to reduce dark current and its associated
noise. In some cases (e.g. a CCD at —90 °C) the dark rate may be so low that
you can omit the correction. A careful observer, though, will always take dark
frames periodically, even if only to verify that they are not needed. It also
appears that the dark current in some multi-pinned-phase (MPP) CCDs is some-
what non-linear, which means you must either model the non-linearity or take
dark frames whose exposure times match those of the data frames.

9.3.3 Detector linearity

All practical devices depart from linearity. If a pixel receives photons at rate
P[x, y] for time ¢, it has a linear output if

Rlx,y] = Re[x,y] + (D[, y] + Ok, y|Plx,y]) = R[x, )] + bE[x,y]  (95)

where R,[x,y], D[x,y] and Q[x,y] are pixels in time-independent arrays, respec-
tively a zero level, the dark rate, and the efficiency in ADUs per photon. A
similar equation applies to the response in electrons, ». The CCD response
curves resemble Figure 9.10a, where the horizontal variable, E, the exposure,
is a quantity proportional to total input (photon count plus dark current). The
detector in the figure is linear between a threshold exposure, E1, and an upper
limit, E;. The output labeled Z is the bias of the pixel.

The pixel saturates at response rg and output Rs. Recall that saturation in a
CCD pixel results if its potential well fills and the MOS capacitor can store no
additional charge carriers. Saturated pixels are insensitive to light and to dark
current, but in many devices can bloom and spill charge carriers into neighboring
pixels. 4 .

Charge-coupled devices have remarkably good linearity over several orders
of magnitude. Equation (9.5) typically holds to better than 1% over a range
E. ~ E, =~ 10° E1. Moreover, the threshold effect for a CCD is very small, so
that R, ~ Z. Recall also that ADCs may be set so that pixels reach digital
Saturation at r << rp.
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Fig. 9.10 Linearity: (a) A
schematic of the output
R, in ADU, and the
response, I, in electrons,
of a single pixel in a
detector that is linear
over a restricted input
range. The sloped
dashed line is Equation
(9.5). (b) An experimental
determination of a
correction for non-
linearity as explained in
the text.
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Many other devices have significant non-linear behavior well short of their
saturation levels, and the observer must remove this non-linearity. Figure 9.10b
illustrates one method for empirically measuring a correction.

Suppose R, is the response of one pixel to a one-second exposure. If this pixel
is a linear detector, satisfying Equation (9.5), then different integration times
with a constant light source should give response Ry =R, + #(R; —R,). However,
the actual detector has the non-linear response, R. A series of exposures of
different lengths can generate a plot of the quantity

R—R,

AR, () = %(R “R)= —(Ri—R) (9.6)

as a function of exposure time ¢. If a linear fit to this has non-zero slope (e.g. the
solid line in Figure 9.10b) that fit indicates a quadratic equéion for the corrected
linear response in the form

Ry =lin(R) = a + bR + ¢R? (9.7)

Strictly speaking, the constants a, b, and ¢ could be different for different pixels
in an array. In most cases, uncertainties in the pixel-to-pixel variation justify
using average values for the entire array.

9.3.4 Flat field

Correcting for pixel-to-pixel variations in device sensitivity is both the most
important and the most difficult preprocessing step. Conceptually, the correction
procedure is very simple. The astronomer takes an image of a perfectly uniform
(or “flat™) target with the complete observing system: detector, telescope, and
any elements like filters or obstructions that influence the focal-plane image. If
the observiﬂg system is equally sensitive everywhere, every pixel in this
flat-field image, after correction for the bias and dark, should produce an iden-
tical output. Any departure from uniformity in the corrected flat-field image will
map the sensitivity of the system, in the sense that pixels registering higher
counts are more sensitive. Figure 9.11 shows a raw CCD image, a flat-field
image, and the original image after the flat-field correction.

Atleast three practical difficulties hamper the kind of correction illustrated. First,
it is difficult to produce a sufficiently (i.e. 0.5% or better) uniform target. Second,
sensitivity variations are in general a function of wavelength. Therefore, the spec-
trum of the target should match that of the astronomical sources of interest. Spec-
trum matching becomes especially troublesome with multiple sources of very
different colors (stars and background sky, for example) in the same frame. Finally,
itis difficult to guarantee that the “complete observing system” remains unchanged
between the acquisition of the flat field and acquisition of the data frames.

In common practice, observers employ three different objects as the flat-
field target: (1) the bright twilight sky, (2) the dark night sky, and (3) a nearby
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object — usually an illuminated surface inside the observatory dome. Images of
these sources are usually termed twilight, dark sky, and dome flats, respectively.
Each has advantages and disadvantages.

Twilight flats

The clear twilight sky is not uniform: it is brighter all the way around the
horizon than it is near the zenith, and, of course, brighter in the direction of
the rising or recently set Sun. By pointing towards the zenith (the exact location
of the “flat” spot — usually 5-10 degrees anti-solar from the zenith —is slightly
unpredictable), the observer finds a target uniform to about 1% over a one-
degree field. It is rare to do better than this. For narrow fields of view, this is
acceptable. Clouds usually prohibit good flats.

The advantages of the twilight-sky target are that, for a brief interval, it is the
right brightness, and relatively uniform. Moreover, observing in twilight means
flat-field calibrations do not consume valuable nighttime hours. The disadvan-
tages are:

o Large-scale uniformity is limited by the natural gradient in the twilight sky, and small-
scale uniformity is limited by the gradual appearance of star images as twilight fades.
The twilight sky has a spectrum that is quite different from that of most astronomical

sources, as well as that of the night sky.

Twilight brightness and spectrum both change rapidly. The duration of useable twi-
light is short, and with large arrays (long readout times), or with many filters, it
becomes difficult to accumulate sufficient numbers of images.

e Scattered skylight near the zenith has a strong linear polarization, and the flat field of

some systems may be polarization sensitive.

Dark-sky flats
The emission from the dark (moonless!) night sky is a tempting source for flat
fields. Uniformity is perfect at the zenith and degrades to about two percent per
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Fig. 9.11 (a) A section of
an unprocessed CCD
image of a star field. (b) A
combined twilight flat for
the same section. The
two dark rings in the
lower right are the
shadows of two dust
particles on the CCD
window. The dark region
in the upper right results
from vignetting by the
filter holder. The section
is shown after
preprocessing in (c).
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degree at a zenith angle near 70 degrees. Moreover, the spectrum of the night
sky is identical to one source of interest: the background that will usually be
subtracted from all data frames, an especially important advantage if measuring
sources fainter than the background sky. High sky brightness is the rule in the
ground-based infrared, where dark-sky flats are the rule.

Offsetting these attractive characteristics are some potent negatives for dark-
sky targets. First, stars are everywhere. Any dark-sky flat will inevitably contain
many star images, marring the target’s uniformity. The observer can remove star
images and construct a good flat with the shift-and-stare or dither method. The
astronomer takes many deep exposures of the dark sky, taking care always to
“dither” or shift the telescope pointing between exposures by at least many
stellar image diameters. He then combines these in a way that rejects the stars.
For example, take five dithered images of a dark field. If the"density of stars is
low, chances are that at any [x, y] location, at most one frame will contain a star
image; so computing the median image will produce a flat without stars. More
sophisticated combination algorithms can produce an even better rejection of
stellar images. The shift-and-stare method should also be employed for twilight
flats, since (1) they will usually contain star images and (2) telescope pointing
should be shifted back to the flat region near the zenith for each new exposure
anyway.

Understand the limitations of shift-and-stare: the scattered-light halos of
bright stars can be many tens of seconds of arc in radius and still be no fainter
than one percent of the background. Removing such halos, or extended objects
like galaxies, can require large shifts and a very large number of exposures.

A second difficulty is that the dark sky is — well — dark. In the visible bands,
one typically requires 10% to 10° times as long to count the same number of
photons on a dark-sky frame as on a twilight frame. Sometimes, particularly in
broad bands with a fast focal-ratio telescope, this is not a serious drawback, but
for most work, it is crucial. Each pixel should accumulate at least 10* electrons to
guarantee one percent Poisson uncertainty; so dark-sky flats will typically require
long exposure times. They are consequently very costly, since time spent looking
at blank sky might otherwise be spent observing objects of greater interest.

A modification of shift-and-stare can sometimes help here. If the objects of
interest occupy only a small fraction of the frame, then it should be possible to
dither and collect many unaligned data frames. The median of these unaligned
frames is the dark-sky flat, and no time has been “wasted” observing blank sky,
since the flat frames also contain the science.

Dome flats

A source inside the dome is an attractive flat-field target, since the astronomer in
principle controls both the spectrum and the intensity of the illumination, and
observations can be taken during daylight. With very small apertures, it is
possible to mount a diffusing light box at the top of the telescope tube, but most
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telescopes are simply pointed at a white screen on the inside of the dome. In
practice, in a crowded dome, it is often difficult to set up a projection system that
guarantees uniform illumination, the shadow of a secondary may become
important in the extrafocal image, and there is an increased possibility of intro-
ducing unwanted light sources from leaks or reflections. Nevertheless, dome
flats are a very important flat-field calibration technique.

Computing simple flats

Assume you haye collected N flat-field images, all taken through a single filter,
using one of the targets discussed above. If's; is one if these raw images, then the
first step in creating the calibration frame is to remove its bias, dark, and non-
linearities:

f =lin(s) - Z —tD

As before, D is the dark rate, £ is the exposure time, and Z; is the overscan-
corrected bias. Next, to simplify combining frames each, frame should be nor-
malized so that the median pixel has a value of 1.0 ADU:

f; = f//medianP(f))

Finally, all normalized frames should be combined to improve statistics, as well
as to remove any stars or cosmic-ray events:

Fc = combine(fy, f2, ..., fn)

A different calibration frame must be produced for each observing configura-
tion. Thus, there must be a different flat for each filter used, and a different set of
flats whenever the observing system changes (e.g. the detector window is
cleaned, or the camera rotated).

Compound flats

Given the imperfections of all three flat-fielding techniques, the best strategy
sometimes combines more than one technique, applying each where its
strengths are greatest. Thus, one uses a dome flat or twilight flat to establish
the response of the system on a small spatial scale (i.e. the relative sensitivity of
a pixel compared with those of its immediate neighbors.) Then, one uses a
smoothed version of a dark-sky flat to establish the large-scale calibration
(e.g. the response of the lower half of the detector relative to the upper half).
The idea is to take advantage of both the absence of small-scale non-uniform-
ities (stars) in the dome or twilight target as well as the absence of large-scale
non-uniformities (brightness gradients) in dark-sky targets. To create the com-
pound flat-field calibration, assume that Fg and Fy are calibration frames com-
puted as described in the previous section. Frame Fg is from a target with good
small-scale uniformity, and Fy, from one with good large-scale uniformity. Now
compute the ratio image and smooth it:
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C = conv{b, ¢}

The kernel in the convolution, b, should be chosen to remove all small-scale
features from image c¢. Image C is sometimes called an illumination correction.
The corrected compound flat is just

F:Fs‘c

9.3.5 Preprocessing data frames
Suppose a CCD has output R; in response to some astrongsnical scene. Prepro-
cessing corrects this image for non-linearity, bias, dark, and flat field:

A lin(R;) —FZi — LD (9.8)

Preprocessing non-CCD array data can differ slightly from the above proce-
dures. For infrared arrays read with double-correlated sampling, the output is the
difference between reads at the beginning and the end of an exposure, so bias
values cancel and Z is numerically zero. Also in the infrared, emission from the
variable background often dominates the images, so much so that raw images
may not even show the location of sources before sky subtraction. A common
observing practice then is to “chop™ telescope pointing between the object
investigated and the nearby (one hopes, blank) sky to track its variations. Many
infrared-optimized telescopes employ chopping secondary mirrors that effi-
ciently implement rapid on-source/off-source switching. Chopping is in this
context different from nodding — manually moving the telescope in the shift-
and-stare technique.

In the infrared, then, these high-signal sky frames are usually combined to
form the flat-field image. A typical preprocessing plan might go like this: if
$1,82, - .., 8y are the sky exposures and F is the flat, then

S = combine(si, 57, ...5,)

f=s-d
F = f'/medianP(f’) (9.9)
Si = aif'
Ri—Si~d
R, = Ri=Si-d
F

We assume that both R; and S are first corrected to remove non-linearity. In the
fourth equation, a; is a scaling factor that matches the medianP or modeP of S to
the sky level of the data frame, which might be computed from the adjacent (in
time) sky frames.
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9.3.6 Fringing

Monochromatic light can produce brightness patterns in a CCD image due to
reflection and interference within the thin layers of the device. Fringing is
usually due to narrow night-sky emission lines, and if present means that the
image of the background sky (only) contains the superimposed fringe pattern. It
tends to occur in very narrow band images, or in images in the far red where
night-sky upper-atmospheric OH emission is bright. The fringe pattern is an
instrumental artifact, and should be removed.

The fringe pattern depends on the wavelengths of the sky emission lines, but
its amplitude varies with the ratio of line to continuum intensity in the sky
spectrum, which can change, sometimes rapidly, during a night. Fringes will
not appear on twilight or dome flats, but will show up on a dark-sky flat pro-
duced by the shift-and-stare method.

If fringing is present, you should ot use the dark-sky image to create a flat
(use twilight), but use the dark-sky image to create a fringe calibration. If S is
the dark-sky image as in Equation (9.9) and B is the processed dark sky image,
we have

B:SLFd = B, + B = B, + Abg
Here, B, is the part of B due to the continuum, and By the part due to fringes. We
treat By as the product of an amplitude, 4, and normalized pattem, br. If B" is a
slightly smoothed version of B, then:

B.[x,y] = minP(B')
Br =B-— BC
A = maxP(B') — minP(B’)

Removing the fringes from a processed science image R is then simply a
matter of measuring the fringe amplitude on the science image, 4;, and sub-
tracting the calibration fringe pattern scaled to match:

A

Ry = Rpi —— by

9.4 Combining images

After preprocessing, astronomers often combine the resulting . images.
You might, for example, have acquired a dozen images of an extremely
fascinating galaxy, and reason (correctly) that adding all of them together
digitally will produce a single image with superior signal to noise. The com-
bined image should show features in the galaxy, especially faint features,
more clearly than do any of the individual frames. In another example, you
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Fig. 9.12 Bar heights
represent pixel values
near a faint star image.
Darker bars are high
enough above the
background to qualify as
image pixels.
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may be trying to observe a nebula whose angular size is greater than the field
of view of your CCD. You would like to assemble a complete image of the
nebula by combining many of your small CCD frames into a large mosaic.
Combining images is a tricky business, and this section provides only a brief
introduction.

9.4.1 Where is it? The centroid

Suppose you want to combine images A and B. An obvious requirement is that
the pixel location of a source in A must be the same as its location in B. But what
exactly is the location of a source? We can compute the location by a two-step
process, preferably through instructions to a computer:

1. Decide which pixels belong to the source.
2. Compute an appropriate centroid of those pixels.

It is not totally obvious how to complete step 1. In the case of point sources like
stars, you can get a good idea of their approximate locations by applying a
Laplacian filter (whose size matches the point-spread function — see the next
section) to a digital frame and noting the maxima of the filtered image. To
decide which pixels around these locations are part of a star image and which
are not requires some thought. For example, if you ask which pixels in a typical
CCD image receive light from a bright star in the center of the frame, the
answer, for a typical ground-based point spread function, is: “all of them.” A
better question is: “which pixels near the suspected star image receive a signal
that is (a) larger than (say) 3o above the background noise and (b) contiguous
with other pixels that pass the same test?”

Figure 9.12 illustrates this approach (there are others) — the bar heights
indicate pixel values in a small section of a CCD frame. Although most of
the pixels in the area probably registered at least one photon from the star in
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the center, only those colored dark gray stand out from the background accord-
ing to the 3¢ contiguous criterion.

With the “star pixels” identified, you can then compute their centroid. Typ-
ically, you consider only that part of the dark gray volume in Figure 9.12 that is
above the background level, and compute the (x, y) coordinates (fractional
values permitted) of its center of mass. If R[x, y] is a pixel value and if B is
the local background level, then the centroid coordinates are:

¥ Y x(Rlx. ] -~ B)

‘ 2.3 y(Rlx,y] — B)

O e e e 9.10

B 3 X7 ) e 3 {77 B I
Xy )

The sums include only star pixels. Depending upon the signal-to-noise ratio

(SNR) in the sums in Equations (9.10), the centroid can locate the image to

within a small fraction of a pixel.

9.4.2 Where is it, again? PSF fitting

Finding the centroid of an image is computationally simple, but works well only
in cases where images are cleanly isolated. If images blend together the centroid
finds the center of the blended object. Even if there is no confusion of images,
one object may asymmetrically perturb the background level of another (a
galaxy near a star, for example).

In situations like this, you can use knowledge of the point-spread function
(PSF) to disentangle blended and biased images. The procedure is to fit each
of the stellar (only) images on the frame with a two-dimensional PSF, adjust-
ing fits to account for all the flux present. The actual algorithm may be quite
complex, and special complications arise if there are non-stellar objects
present or if the shape of the PSF varies from place to place due to optical
aberrations or to anisoplanatism in adaptive systems. Despite the difficulties,
PSF fitting is nevertheless essential for astrometry and photometry in
crowded fields.

9.4.3 Aligning images: shift, canvas and trim

Figure 9.13 shows two CCD frames, A and B, of M33 at different telescope
pointings. Each frame has dimensions xp,, = 256 X ypax = 256. We consider the
problem of aligning the two images by applying a geometric transformation to
each — a geometric transformation changes the pixel coordinates of image data
elements. In this example, we make the transformation by first measuring the
[x, y] coordinates for three stars in the area common to both frames. Suppose that
on average, we find for these objects that xg —xa = Axg = —115 and that
¥B —ya = Ayg = 160. (Assume for now that coordinates are restricted to inte-
gers.) There are two possible goals in making the transformation.
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Fig. 9.13 Aligning and
combining two images.
Alignment and
transformation are based
on the coordinates of the
three marked stars in the
overlap region. See text
for details.
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First, we might wish to make a new image that contains data from both A and
B, perhaps to improve the SNR. Do this by creating A’ and B', two small images
that contain only the overlap area from each frame:

A,[ia ’I] . A[é + Avar’]

B'&,n] = B[E,n + Ay (9.11)

The values stored in the pixels of A’ and B’ and are the same as the values in A
and B, but they have different coordinates. The translation operation executed
by Equation (9.11) simply slides B and A until coordinates match. An important
step in making the new images discards or trims any pixels that fall outside
the overlap region. Specifically, we trim all pixels except those with coordinates
1 < Xmax — |Ax,] and 1 < ymax — |Ay,|. Both trimmed images thus have the same
size, which means we can combine them (add, average, et&?) using image
arithmetic. For example:

CAND=AI+B’

More complicated combination algorithms might be appropriate, especially
with large numbers of images.

A second mode of image combination arises when we note that the large
galaxy in Figure 9.13 does not fit in a single frame, and we wish to combine the
two frames to make a wide-angle view. We want an image that includes every
valid pixel value from either A or B. The procedure is simple: we make two
canvases, C, and Cg, each with dimensions xmax + |Ax,| bY ymax + [Ay, |, large
enough to include all pixels. Then, we “paste” each image in the appropriate
section of its canvas, and then combine the large canvases into one large final
image. In our example, the canvases have coordinates &', 7', and the operations
that paste the images onto their canvases are:

A f CanD
L
Cor
o Lo}
¢
B' A
n Ve
c ‘é’“ —_———
£ Mosaic
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C ! l) e AI(Ea"/ - Ayu) = A(élar’/ - Ay3)7 1 S él Sxmaxyl S 71’ Symax + AyB
(&) =4 Z10, 000 otherwise

N — B/(il’ﬂ, - Ayn)zB(il + Axmﬂl)y 1< é, < Xmax + Axg, 1 < ’7I < Ymax
Ga(&1) =1 10,000 otherwise

The arbitrary large negative value of —10,000 simply flags those pixels for
which there are no data. Any value that cannot be confused with genuine data
can serve as a flag.‘We can combine the two canvases

Cor = combine(Ca, Cg)
with some appropriate algorithm. For example, the pseudo-code:

IF {Cplx,y] # —10,000 AND  Cglx,y] # —10,000}

THEN Corlx,y] = %[CA [, y] + Calx, |

ELSE COR[xyy] = maX[CA[x:y]a CB[x7y]]

will compute values for mosaic pixels for which there are some data, and put a
flag (—10,000) in those where there is no data.

9.4.4 Aligning images: geometric transformations

Translations are only one of several kinds of geometric transformation. Sup-
pose, for example, you wish to combine images from two different instruments.
The instruments have different pixel scales® (in seconds of arc per pixel); so one
set of images requires a scale change, or magnification. The transformation is

x=¢/M,
y= n/M,

Again, [¢, 4] are the coordinates in the new image, and the equations allow for
stretching by different amounts in the x- and y-directions.

Small rotations of one image with respect to another might occur if a camera
is taken off and remounted on the telescope, or if images from different tele-
scopes need to be combined, or even as the normal result of the telescope
mounting (e.g. imperfect polar alignment in an equatorial, an imperfect image
rotator in an alt-azimuth, or certain pointing schemes for a space telescope). If

% Scale differences can have subtle causes: the same CCD—telescope combination can have slightly
different scales because of focal-length changes caused by thermal effects on mirrors or chromatic

effects in lenses.
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Al is the image produced when A is rotated about its origin counterclockwise
through angle 6, then 4'[¢, 5] has the same pixel value as Alx, y] if

x=¢cosf + nsinf
y = ncosf — Esinf

For wide fields, optical distortions can become significant (e.g. the Seidel
pincushion or barrel distortion aberration, which increases with the cube of
the field size). These require relatively complicated transformations.

In creating mosaics from images with different telescope pointings, pro-
Jection effects due to the curvature of the celestial sphere also need to be
considered. Such effects have long been an issue in photographic astrometry,
and chapter 11 of Bimney e al. (2006) outlines a simple treatment of the
problem. *

To derive any geometric transformation, the general approach is to rely on
the locations of objects in the field. In the final transformed or combined image
we require that a number of reference objects (1, 2, 3,. .., N) have pixel coor-
dinates (£y,1,), (&2, 12), - - -, (Eny 1y ). We can call these the standardized coor-
dinates — they might be coordinates derived from the known right ascention
(RA) and declination (Dec) of the reference objects, or might be taken from the
actual pixel coordinates on a single image. Now, suppose one of the images you
wish to transform, image B, contains some or all of the reference objects, and
these have coordinates

(x1,ym), (¥82,¥82), - - -, (xBar, yem) M <N

Your task is to find the transformations

x = falé, 1]
v =gslé,n]

that will tell you the pixel values in B that correspond to every pair of
standardized coordinates. You specify the forms for the functions from your
knowledge of how the images are related. You might, for example, expect that
narrow-field images from the same instrument would require just a simple
translation, while wide-field images from different instruments might need addi-
tional correction for magnification, rotation, distortion, or projection. For a
given functional form, the usual approach is to use a least-squares technique
to find the best values for the required constants Ax, Aya, 8,M,, etc. Note that
some geometric transformations may not conserve flux (sece the next section).

Reducing data from digital arrays very commonly involves a two-step align
and combine procedure:

(a) apply geometric transforms on a group of images to produce a new set aligned in 2
common system of coordinates, correcting for flux changes if necessary, then
(b) combine the aligned images with an appropriate algorithm.

9.4 Combining images

This procedure is often termed shift and add. Basic observational issues
make shift and add an indispensable technique, and we already discussed some
of these in the context of the shift-and-stare observing technique for flat-field
calibration images. (You do shift and stare at the telescope, shift and add the
data-reduction computer.) To shift and stare, or dither, the observer takes sev-
eral exposures of the same scene, shifting the telescope pointing slightly
between exposures. The aim is to produce a number of equivalent exposures,
no two of which are perfectly aligned.

There are many reasons to take several short exposures rather than one long
one. For one thing, all arrays saturate, so there may well be an exposure time limit
set by the detector. Second, the only way to distinguish a pixel illuminated by a
cosmic-ray strike from one illuminated by an astronomical object is to take
multiple images of the scene. Astronomical objects are present in every image
at the same standardized coordinate location; cosmic rays (and meteor trails and
Earth satellites) are not. Similarly, bad pixels, bad columns, and the insensitive
regions in array mosaics always have the same pre-transformation coordinate, but
different standardized coordinates. When tmages are aligned, the bad values due
to these features in one frame can be filled in with the good values from the others.

9.4.5 Interpolation

Geometric transforms set the values of the pixel at standardized coordinates
[éj, nj] in a new image to those at pixel at (xj, yj) in the original image; see
Figure 9.14. Now, £; and #; must be integers, but x; and y; generally contain
fractional parts. Therefore, we use round brackets (non-integers permitted) to
write, symbolically

Bl[éjv”’j] = B(fl} [éjvrlj]agB [fj:”lj]) = B(x,))

Since we only know the pixel values for the image B at locations where x and
y are integers, we must use the pixel values at nearby integer coordinates to
estimate B(x;, y;) —the value a pixel would have if it were centered precisely at
the non-integer location (xj, yj).

We could, for example, ignore any image changes at the sub-pixel level, and
simply round x; and y; up or down to the nearest integers, and set B(x;,y;) equal
to the value of the nearest pixel. This is simple, and largely preserves detail, but
will limit the astrometric accuracy of the new image.

Bilinear interpolation often gives a more accurate positional estimate.
Figure 9.14 shows the point (xj7 yj) relative to the centers of actual pixels in
the original image: we compute x, and yy, the values of x; and y; rounded down
to the next lowest integers. Thus, the values of the four pixels nearest the frac-

tional location (x;, y;) are
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Fig. 9.14 Bilinear
interpolation. The
methods finds the value of
the image intensity at
point (x; y;). given the
nearest pixel values.




304

Fig. 9.15 The original
pixel values in the upper
left are shifted by 0.5
pixels to the right. In the
lower left, the shift and
linear interpolation
smoothes the original,
removing peak P, which
may be due to noise or
some real feature. At the
lower right, 3 X
resampling preserves
more detail after shift and
interpolation.

Digital images from arrays

Byo = Blxo,»0), Byg = Blxg + 1,y
Bor = Blxo,yo + 1],  Bii = Blxg + 1,y + 1]

If we assume that B changes linearly along the axes, we can make two
independent estimates for the value of B(x;,y;). These average to the bilinear
interpolated value:

B(x;y;) = (1 — Ax)(1 — Ay)Boo + (Ax)(1 — Ay)Bio + (1 — Ax)(Ay)Boy
+ (Ax)(Ay)By; (9.12)

where
Ax =x;—x0, Ay =y;—»

Bilinear interpolation preserves astrometric precision and i:ffects photometry
in predictable ways. (Any geometric transformation in which the output grid
does not sample the input grid uniformly will change the photometric content of
the transformed image.) As you can see from Equation (9.12), the procedure
essentially takes a weighted average of four pixels — as such, it smoothes the
image. Bilinear interpolation chops off peaks and fills in valleys, so an interpo-
lated image is never as sharp as the original; see Figure 9.15. Furthermore, the
smoothing effect artificially reduces image noise.

If resolution is of great concem, it is possible to fit the pixels of the original
image with a higher-order function that may preserve peaks and valleys.
The danger here is that higher-order surfaces may also produce artifacts and
photometric uncertainties, especially for noisy images. Nevertheless, it is not
unusual for astronomers to use higher-order fitting techniques like bicubic inter-
polation or B-spline surfaces.
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9.4 Combining images

9.4.6 Resolution: resampling, interlace, and drizzle

Geometric transformations are essential for combining images with the shift-
and-add image technique. Transformations, however, require either interpola-
tion (which degrades resolution) or the “nearest-pixel” approximation, which
degrades positional information. Resampling the original image at higher mag-
nification circumvents some of the image degradation that accompanies inter-
polation, and in some cases can actually improve the resolution of the combined
image over that of the originals.

The idea is to make the pixels of the output, or transformed, image smaller (in
seconds of arc), and thus more closely spaced and numerous, than the pixels of
the input image. In other words, the scale (in arcsec per pixel) of the stand-
ardized coordinates is larger than the scale of the original input coordinates. We
discuss three resampling strategies.

The first is just a modification of the shift-and-add (and interpolate) algo-
rithm. All that is done is to resample each input image by an integral number
(e.g. each original pixel becomes nine pixels in the resampled version). After
shifting or other transformations, resampling mitigates the smoothing effect
produced by interpolation, since this smoothing effect is on the scale of
the output pixels. Figure 9.15 shows a one-dimensional example. An image
is to be shifted 0.5 pixels to the right from its position in the original. The left-
hand column shows the result of the shift and linear interpolation without
resampling, and the right column shows the same result if the output pixels
are one-third of the size of the input. Linear interpolation in each case pro-
duces some smoothing, but the smoothing is less pronounced with the finer
grid. Compared to using the original pixel sizes, aligning multiple images on
the finer output grid will of course improve the resolution of their combined
image.

The second method is usually called interlace, and is in some ways analo-
gous to the nearest-pixel approach described earlier. The interlace algorithm
examines each input pixel (i.e. B[x, y] at only integer coordinates), locates its
transformed center in a particular output pixel in a finer grid (but again, only
integer coordinates), and copies the input value to that single output pixel. There
is no adjustment for fractional coordinates, nor for the fact that the input pixel
may overlap several output pixels. Figure 9.16a gives an example of a shifted
and rotated input grid placed on an output grid with smaller pixels. The center of
each input pixel is marked with a black dot. Interlacing this single input places
values in the output pixels (i.e. the dark-colored pixels), “hit” by the dots, and
“no value” or “zero-weight” flags in the other pixels.

Interlace for a single image is a flawed approach. First, it creates a discon-
tinuous image, since only some fraction of the output pixels will score a “hit”,
and the remainder will have zero weight. Second, we have introduced positional
errors because we ignore any fractional coordinates.
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Fig. 9.16 Resampling an
input grid. The interlace
technique (a) regards
values in the input grid as
if concentrated at points.
Grayed pixels on the
output copy the values
from the input points,
white-colored output
pixels have no value. The
drizzle method (b)
assumes values are
spread over a square
“drop” smaller than an
input pixel. Most output
pixels overlap one or
more input drops,
although some, as
illustrated, may overlap
none.
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Both problems become less significant as more images of the same scene are
added to the output. If each addition has a slightly different placement on the
output grid, a few additions could well fill in most output pixels with at least one
valid value. Moreover, positional information improves as the interlace fills and
averaging reduces uncertainty in the brightness distribution.

The combined image is a weighted mean of all the shifted frames, with the
weight, w;[£, 7], of a particular pixel either one (if it is a hit) or zero (if no hit or
if we decide the hit is by a cosmic ray or by a bad pixel). Thus, the combined
image C is

ClE, 1) = ———— (wal& B &, 1] + wall, mBSLE ] + ... +ww[E, B LE, )
Z Wi[é: V[]

i=1

(9.13)

We cannot use Equation (9.13) for any pixel in C with a combined weight of
zero. In this case, the pixel has no valid value. It is possible to interpolate such a
missing value from the surrounding output pixels, but this will cause photo-
metric errors unless the “no-value™ status is due to masking cosmic rays or bad
pixels.

Interlacing shifted images has the potential for actually improving image
resolution in the case where the camera resolution is limited by the detector
pixel size rather than by the telescopic image itself. Figure 9.17, shows the
interlaced result for a one-dimensional example: a double source with a sepa-
ration of 1.3 input pixels, with each source FWHM = 0.8 pixels. Three dithered
input images are shown, none of which shows the double nature of the source, as
well as the interlaced combination with 1/3-size output pixels. The combined
image resolves the two components.

The interlace technique is powerful, but unfortunately difficult to execute
observationally. Suppose, for example, a detector has 0.8 arcsec pixels. To
effectively interlace images on an output grid of pixels half that size, the
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astronomer must observe four frames, displaced orthogonally from one another
by an odd multiple of 0.4 arcsec. Some observers can achieve the placement
needed for an efficient interlace, but the limited precision of many actual tele-
scope controls usually produces a set of exposures whose grids are dithered
randomly at the sub-pixel level.

The variable-pixel linear reconstruction method, more commonly known as
drizze, can be much more forgiving about input grid placement. Drizzle
assumes that the flux in a square input pixel of size (length) 4 is not spread
over the pixel, but is uniformly concentrated in a smaller concentric square,
called a “drop,” whose sides have length fd; see Figure 8.16b, where the drops
are the shaded squares. The fractional size of the drops, i.e. the value of £, can be
varied to accommodate a particular set of images. As f — 0 the drizzle method
approaches the interlace method, and as f—1 drizzle, drizzle approaches
resampled shift and add.

We introduce a parameter, s, to measure the relative scale of the output
pixels: for input pixels of length d, output pixels have length sd. The drizzle
algorithm then runs as follows: Input pixel B;[x,y] in frame i will contribute to
output pixel Bj[£, #] if any part of the input drop overlaps the output pixel. If the
area of overlap is a;[x,y,&1](fd)’, then the contribution will be

Bi[xyy] I/Vi[xay]ai[x7y, é: rl]sz

The factor s*conserves surface brightness in the final image, and the weight-
ing factor W;[x, y] accounts for bad pixels and other effects (e.g. exposure time)
in the input frame. Adding all contributions from the input image (up to four
input drops can overlap a single output pixel), we assign the output value and
weight as
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Fig. 9.17 The interlace
method in a one-
dimensional example.
The actual brightness
distribution of a double
source is sampled with
large pixels. In three
samples {upper plots)
displaced from one
another by 1/3 of a pixel,
no indication of the
double nature of the
source appears, yet the
combined and interlaced
image (bottom plot) does
resolve the source.
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B:[éﬂ”] = SZZB,-[x,y]W,-[x,y]a,-[x,y, éa"]
xy
Wi[i) '1] - Z n/i[xay]ai[x7y7 67 ’1]
Xy

We make the final combination of images by computing the weighted mean of
all the input frame contributions to each pixel as in Equation (9.13).

N
PRAIA]
C[évr’] n ’;l——

9.4.7 Cleaning images L

Images inevitably have defects caused by bad detector pixels or by unwanted
radiation events like cosmic-ray impacts or radioactive decays in or near the
detector. Most methods for removing such defects require multiple dithered
images of the same scene.

One familiar prescription works quite well. Start with N>>2 dithered images
{R1,Ry,..., Ry} whose intensities are scaled to the same exposure time. Align
them (i.e. use a geometric transform to make all astronomical sources coincide):

R} = GXfom(R;), i = 1,...,N

Now combine the transformed images to form the median image:

C = median(R, RS, ..., RYy)

The median is relatively insensitive to pixel values (like many radiation events
or bad pixels) that differ greatly from the central value, so it produces a “clean”
version of the image. Although simple to execute, the median becomes less
graceful with images of differing weights and does have some shortcomings:

1. Atalocation where all pixel values are good, the median is not as good an estimator of
the central value as is the mean.

2. The median is not completely insensitive to deviant values: e.g. the median will be
slightly biased towards higher values at the location of cosmic-ray hits.

3. The median will perform very poorly in special cases (e.g. if multiple values at the
same location are bad).

A more sophisticated cleaning method is to flag the defects in the original
images, sometimes by assigning the affected pixels a special value (a large
negative number, for example) or by assigning them a weight of zero. In one
technique of this sort, the astronomer generates a special companion image, the
mask, for each R;. The mask values (usually either one or zero) indicate whether
the corresponding image pixel is to be included or excluded in any subsequent
operations; see Figure 9.18.

9.5 Digital aperture photometry

R, m,

Combined image and mask
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How can you generate a mask for a particular image? Usually, bad detector
pixels or columns are well documented or are easily discovered on flat-field
exposures. You can identify radiation events, which occur at random locations
and can mimic images of astronomical objects, with the median-image method
described at the start of this section. Once the complete mask is generated for an
input image, a conservative approach might be to mask all pixels that are
adjacent to bad pixels as well, since radiation events tend to spill over. At the
end of this process, there will be a separate mask for each input image.

You then geometrically transform all input images, along with their masks,
so that all are aligned. The final combination of these aligned images is a
weighted mean in which all defective pixels are ignored. That is, if m; is the
mask for input image #, w; is the image weight, and m’; is the transformed mask:

N
Cltn) = =
.Zl w;m;[{, 71]

Figure 9.18 illustrates a simple combination of two small images using
masks.

9.5 Digital aperture photometry

We have discussed the preprocessing of individual images (the linearity, dark,
bias, flat, and fringe corrections) and the combination of multiple fraines to
produce a deeper and possibly wider image. As a reminder, we summarize those
steps here:

lin(R;) —Z; — ;D 4;

Ry = —— 4 —— b
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Fig. 9.18 Pixel masks.
Two offset images of the
planetary nebula NGC
2392 (The Eskimo) are
marred by an insensitive
column and many cosmic
ray strikes. The mask next
to each raw image on the
left blocks {black pixels

= 0, white = 1) every bad
pixel and its immediately
adjacent neighbor. The
right-hand images show
the combined image and
mask after alignment.
Since there are only two
images, the combined
image shows noticeably
different noise levels in
masked and unmasked
regions. Two pixels in the
upper left are masked in
both images and have
zero weight. They show
as black in the right-hand
image of the combined
masks.
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R} = GXform(Rpy;)
C = combine(R’, R, ..., RY)

Here we understand that the combination will be something like a median image
or weighted mean, perhaps utilizing masks and a drizzle.

The next task in the reduction procedure is often measurement of the brightness
of one or more objects. Measuring brightness is at heart a simple task —we did it in
the exercises in Chapters 1 and 2. Start with the preprocessed image — an individua}
frame, Ry, or an aligned/combined accumulation of such frames, C. Then just add
up the emission from the object of interest, which usually is spread over many
pixels. In doing so, remember to remove the background, which contains positive
contributions made by sources both behind and in front of the object of interest.
The latter include scattered light from other astronomical cj;,jects as well as the
glow of the atmosphere and (especially in the thermal infrared) of the telescope.
We will use the terms sky and background interchangeably for all this unwanted
light, no matter where it originates. Once we have isolated the signal attributable to
the source alone, we will need to quantify the uncertainty of the result.

Finally, the signal measured will only be meaningful if it is calibrated —
expressed in units like magnitudes or waltts per square meter. We consider the
calibration process in the next chapter, and confine ourselves here to the tasks of
separating signal from background and of estimating the uncertainty of the result.

9.5.1 Digital apertures and PSF fits

Consider a very common situation: from a digital image, you want to determine the
brightness of a point source — a star, quasar, or small object in the Solar System.
Define a circular area, the digital aperture®, that is centered on the centroid of the
object (see Figure 9.19). The radius of the digital aperture should include a sub-
stantial fraction of the emission from the star. Now make three simple computations:

1. Add up all the pixel values inside the aperture. This sum represents the total emission
from the aperture — the light from the star plus the light from the background. To deal
with fractional pixels (see Figure 9.19) at the edges, multiply every value by A[x, ],
the fraction of the pixel’s area that is inside the aperture.

Total = Y A[x, y|Rp[x, ]

Xy

mix = Y, Alx,y]
xy

* Yes, aperture means “opening”. The terminology recalls the days of photoelectric photometry,
when it was necessary to place an opaque plate with one small clear aperture in the focal plane.
This passed only the light from the star and very nearby sky through to the photocathode, and
blocked all other sources.

9.5 Digital aperture photometry
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The sums are understood to extend over the entire x—y extent of the aperture.
The number n,;y, is just the area of the aperture in pixels.

2. Estimate B, the value of the sky emission per pixel. Usually, you must estimate B from
a source-free region near the object of interest (see the next section for details).

Compute that part of the emission in the aperture that is due to the sky:

sky = npixB
3. Subtract the sky emission from the total, and the remainder is the detector response
attributable to the source alone; this is the signal in ADUs:
Sapu = total — sky

Savu = Y. Alx, y|Rp[x,y] — npix B
Xy

(9.14)

In situations in which star images seriously overlap, digital aperture photo-
metry fails, because it is impossible easily to estimate the polluting star’s
contribution to the background of the object of interest. We have already
discussed (Section 9.4.2) the idea of fitting a PSF to each star image on a
frame. Point-spread-function fitting is required in crowded-field photometry
since (at the cost of considerable computational complexity) it can separate the
contributions of individual overlapping images from one another and from the
diffuse background. Once all overlapping images are accounted for, integra-
tion of the PSF fit of the image of interest gives the signal term in Equation
(9.14).

The question of aperture size is important. For PSF fitting, the aperture size is
often technically infinite, e.g. a typical PSF for a ground-based image is Gaus-
sian-like — see Appendix J. You can determine the appropriate PSF shape by
examining high-SNR star images and comparing their profiles (especially the
central regions with good signal) to expected shapes or by constructing an
empirical shape. For PSFs, well over 90% (usually much more) of emission
is within a diameter of three times the FWHM.
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Fig. 9.19 Digital
apertures. The upper left-
hand image shows a
circular aperture centered
on“a point source; lower
left, rectangular
apertures for sampling
background emission.
The image in the upper
right shows an annular
aperture for sampling sky
emission near a point
source. All curved
apertures will require
some strategy for dealing
with pixels that contain
some segment of the
boundary, as in the
image at the bottom
right.
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Fig. 9.20 PSF and
aperture photometry. At
left are values of pixels in
the x-direction through
the centroid of a star
image. Data have been fit
with a background sky
level and a Gaussian. The
shaded area gives the
contribution to the total
flux from this row of
pixels. At right are the
same data measured with
a digital aperture, where
the shaded area again
gives the contribution to
the total flux. The
optimum aperture size
will exclude some flux
present in the wings of
the profile.
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If he does not use PSF fitting, the astronomer must choose the digital aperture
size; see Figure 9.20. There are two conflicting considerations: he wants a large
aperture because it includes as much light as possible from the star, yet he wants
a small aperture because it excludes background light andl_sspecially, its asso-
ciated noise. An aperture that includes too much sky will decrease the SNR of
the final measurement, as will an aperture that includes too little of the source.
The optimum size varies with the relative brightness of the star. Since point-
source photometry requires the same aperture size for all stars, this generally
means the astronomer chooses the aperture size based on the faintest star
observed. The choice is implemented in software, so it is easy to try a range
of apertures (diameters somewhere between 0.75 and 4 times the FWHM of the
image profile) and identify the aperture (usually, a diameter near 1.5-2 times the
profile FWHM) that yields the best SNR.

Finally, note that a digital aperture need not be circular. Indeed, many objects
have decidedly non-circular shapes, and invite equally non-circular apertures.
Photometry via Equation (9.14) applies as well to such shapes.

9.5.2 Measuring the sky

Both PSF fitting and digital aperture photometry demand an accurate measure of
the sky emission per pixel over of the source of interest. This, of course, is one
area where it is impossible to measure the sky brightness, so we measure the sky
near the source, and hope that sky brightness does not change with location.
There are some cases where this hope is forlom. A notorious example is the
photometry of supernovae in other galaxies: the background due to the host
galaxy changes drastically on the scale of a digital aperture size, so any
“nearby” sky measurement is guaranteed to introduce uncertainty. (Fortunately,
supernovac are temporary. An image of the galaxy obtained with the same
instrument after the supernova has faded can provide the needed background
measurement.)

A smooth background near the source should ameliorate many difficulties. In
this case, the nearest possible sample should be the most accurate, and a sample
symmetrically positioned around the source stands a chance of averaging out
any trends. Figure 9.19 shows a digital aperture and a sky annulus. The annulus

9.5 Digital aperture photometry

is a region between two circles centered on the source. The smaller circle (the
inner boundary of the annulus) is as small as possible, but still large enough to
exclude any appreciable emission from the source. The outer radius of the
annulus is less strictly determined, but should be large enough to include a
statistically significant number of pixels. If the outer radius is too large, it
may sample sky that differs from the sky within the aperture.

The best estimate of the sky value in the annulus is clearly not the mean pixel
value: the annulus is bound to contain images or halos of other stars. These bias
the mean towatds larger values. The median is less sensitive to the influence of
this kind of pollution, and the mode is even better: the most common value in the
annulus certainly sounds like the optimum measurement of the sky. Practical
computation of the mode usually requires the construction of a smoothed histo-
gram, with the sky value computed as the mean of the values in the most
populous bin of the histogram.

Figure 9.19 illustrates a second approach to measuring the sky value. An
astonomer selects one or more relatively star-free sections of the image, and
computes the median or modal value. The advantage of this method is that it
avoids the influence of nearby sources on background estimates, and if the field
near the source of interest is crowded, this is the only alternative. The disad-
vantage is that the sky sections may be relatively far from the point of interest,
and they may not sample uniformly enough to minimize the effects of large-
scale trends in background brightness. As explained earlier, in the infrared, one
generally obtains sky levels from separate (chopped) exposures.

9.5.3 Signal and noise in an aperture

Knowing the uncertainty of a digital photometric measurement is nearly as
important as discovering its value. In this section, we develop an equation for
the SNR in aperture photometry with a CCD. The general approach, if not the
exact equation, will apply for photometry with all digital arrays.

For simplicity, we consider only the case of a single exposure, corrected for
non-linearity, dark, bias, and flat. Recall the digital aperture photometry oper-
ation given in Equation (9.14):

Savo = {zA[x,y]Rp[x,yJ} ~ B 9.15)

Here A|x, y] is the fraction of the pixel inside the digital aperture, and B is the
estimated average background emission per pixel. The pixel values are in ADUs
(analog-to-digital units), values that we can convert to the number of electrons
read out from the pixel by multiplying by g, the CCD gain factor. In terms of
electrons, then, Equation (9.15) becomes

Signal = N, = glSapy] = {ZA[x,erp [x,yl} — b
BN
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Here the signal is N,, the total number of electrons produced by the source in
the aperture. The values 7, [x, y] and b, are the preprocessed pixel value and the
estimated background value in electrons. The noise, or uncertainty in N,, fol-
lows from an application of Equation (2.17) to (9.15). Although it is not always
safe to do so, we assume uncertainties in pixel values are not correlated:

i = {Z (Y 21} + ©0.16)
xy

To evaluate afvp [x, ], the uncertainty in a preprocessed pixel value, we write
out the preprocessing operation for a single pixel as described for a CCD in
Equation (9.8):

mhﬂ=f§ﬂﬂ0hﬂywﬂ—4mﬂ—Qﬁﬂ} (9.17)

Here:

f[x,y] = the normalized flat field response,

d,[x,y] = the estimated dark count in the pixel in electrons,

{_[x,y] = the estimated bias level in the pixel, in electrons, and

L(r(x,y]) = the linearity correction for the pixel, expressed as multiplicative
factor.

We will again assume that the uncertainties in each of the variables in
Equation (9.17) are not correlated, so that we can apply Equation (2.17) to
compute the variance of processed pixel value:

L2 1 1 I Lr —d, — ()
a7 eyl = ‘Tff—g + Ozdcf—q + 02072 + O—%f_-z + U%{rTC}
To simplify the notation, we have omitted the [x, y] coordinate references for all
the terms on the right-hand side. We can clean up this expression further by
noting that f ~ 1 and L ~ 1:

of,p[x,y] = of + olc’c + aﬁyc + a%r2 + oﬁ(r—dc - Ce)z (9.18)

We will examine each of the terms on the right-hand side in turn. The first term
in Equation (9.18) is the square of the uncertainty in the raw pixel value itself.
The unprocessed pixel value is just

rbe,y] = le,y] + Loyl = nle,y] + blx,y] + dlx,y) + Lx, y]

where the four quantities on the extreme right are, respectively, the actual
single-pixel values of the signal, background, dark, and bias expressed in elec-
trons. The variance of the raw pixel value must be

oty = ok + oy =r +p

The variance of the pixel response, #[x,y], is equal to its mean because the
response is Poisson-distributed. Noise present on every readout of the device,

‘r
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independent of exposure time or illumination, produces the variance of the bias
Jevel, p?. For a CCD, we distinguish two components:

P = o

rcad

+ ozdigit

The first is the read noise — the uncertainty in the zero-level signal from the
output amplifier. The second is the digitization noise — the uncertainty that
results when the ADC circuit rounds the analog signal to an integer. If the
analog values are uniformly distributed, the digitization noise is g / V12, where
g is the CCD gain. Usually the CCD gain is adjusted so that the digitization
component is smaller than 62, but we will include both in the parameter p, the
“zero-level uncertainty” or “digital read noise”.

The actual values for the background b[x,y| and dark d[x,y] levels in a
particular pixel are unknown, and we will simply use estimated values: the dark
is estimated from dark frames (or assumed to be zero if the detector is
sufficiently cold) and the background is estimated from nearby ““sky” pixels.

Thus
Ayl ~n+ b +d, + p? (9.19)

The second term in Equation (9.18) is the squared uncertainty in the
“estimated” bias level (different from the read noise in a single pixel!).
This estimate is usually computed by averaging a number of calibration frames.
If the bias drifts, then o, might be large. If we obtain p, bias frames, the
minimum variance of the mean of the p,values for the bias at pixel [x,y] is
given by

S

2 _
e =

(9.20)

SR

where p is the digital read noise. If the bias is obtained from an overscan, and the
base bias pattern is very well determined, then p, is the number of columns in
the overscan.

Likewise, the third term is the variance in the estimated dark count. If the
estimate is an average of pq dark frames, each of the same exposure time as the
data frame, then the variance of the mean is

1 1
63, = —qde + <1 + —)pz} 9.21
d’ pd{ P 21

The second term in the braces is there because dark frames are themselves
processed by subtracting an estimated bias level. Note that we assume the same
number of number bias frames, p,, are used for the dark as for the data.

The fourth term in Equation (9.18) is o272, the variance in the linearity
correction scaled by the square of the pixel value. Uncertainty in the linearity
correction should not be of concern with most CCDs except near saturation
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(usually no correction is made), but it can be an issue in infrared arrays where
linearity properties may vary from pixel to pixel. The value of o2 can be
measured by examining linearity calibration frames.

The fifth term in Equation (9.18), 6%(n + b)* (where n + b = r — ce)
arises from the uncertamty in the normalized flat field. In the 1deal case, af
should approach (n;[x, ¥])™", where n¢[x, ] is the total number of photoelectrons
counted at the pixel locatlon in all flat-field calibration exposures. One should
thus be able to reduce this uncertainty to insignificance just by accumulating
enough calibration frames. Real observational situations seldom approach the
ideal, and one can investigate uncertainties in the flat by, say, comparing com-
bined flats taken on two different nights, or by varying the color of the flat-field
target.

Substituting Equations (9.19), (9.20), and (9.21) io (9.18) gives the var-
iance in the value of a single preprocessed pixel.

of’p[x,y] =n+ b, + ay(de + a,p*) + 2r* + o (n + bc)2 (9.22)
where
1
a =1+ —, az=1+l
Dd Dz

Now return to Equation (9.16). We require a value for the uncertainty in the
estimated background. We usually estimate the background by averaging
rp[x,y] in a region of py pixels (e.g. the sky annulus) in which #[x, y)is zero.
That is,

sky section

Y, by

be = l
Py, xy
The variance, then, is
1
oo = 2Tl = {2}
Py

But we have just worked out af’p[x, ], the variance of a single preprocessed
pixel. Substituting for the average variance J-f,p from Equation (9.22) for the
case nfx,y] = 0:

1
e = ket ag(ds + a,p?) + 7 + 6% (b.) } (9.23)

Now we can turn to Equation (9.16) one last time:

Xy

aperiure
o-%l = { 2 {A[x,y]}za'ip[x,y]} + ”giﬁg,c

We know all terms on the right-hand side, so substituting

h &
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2

— (E{A[x,y]}zn[x,y]) + (P2 + "ppl:) (bc + ag(d. + azpz)) + s% + sfz‘ (9-24)

where

P = Z(Axy o (‘ZA[xy)

The parameter P is the properly weighted pixel count in the aperture for
computing the uncertainty of a uniform signal. The two terms on the extreme
right of Equation (9.24) are the contribution to the variance due to uncertainty in
the linearity and the flat-field corrections. We can write formal expressions for
these, but they can only yield values if one can examine the repeatability of flat
and linearity calibrations; see Problems 9.4 and 9.5.

Equation (9.24) does not include some sources of uncertainty that could be
important in a specific array, like uncertainties in corrections for charge-transfer
inefficiency. If such effects can be well modeled, one could in principle repre-
sent them with additional terms.

As a tool for evaluating photometric uncertainty, the most serious problem
with Equation (9.24) is its failure to account for systematic effects like those due
to the non-uniformity of a flat-field target, color differences between sky, star,
and flat, or variations in atmospheric transparency. You should not use this
equation to evaluate the uncertainty in your digital photometry. As always,
the primary information about the uncertainty of your photometry comes from
the scatter in repeated observations and the disagreement of your results with
those of others.

But Equation (9.24) is far from useless. It gives you a way to compare the
expected random error with the actual scatter in your data—if you get something
unexpected, think hard to understand why. The equation is also a very important
tool for planning observations, for answering questions like: “how many
minutes at the telescope will I need if I want to measure the brightness of my
V' =22.5 quasar with a precision of 1%?”

9.5.3 The CCD equation

We will use Equation (9.24) for the not-so-special case of aperture photometry
on a star. For most reasonable apertures, the counts due to the star are very small
at the edge of the aperture where the partial pixels are located. In that case, we
will not be far off in making the approximation (which applies exactly if partial
pixels are not employed):

Y A[x,yln[x, y] ~ ZA x, ylnx,y] =

The SNR then implied by Equation (9.24) is
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N.
{No + (P + ay)(be + au(ds + a,p?)) + sf + 2}

SNR =

(9.25)

This equation, in various approximations, is known as the CCD equation.
The usual approach is to simplify Equation (9.25) by assuming good prepro-
cessing practices as well as good fortune, so that the system will remain stable
and the observer will collect a very large number of bias and (if needed) dark
frames, the flat-field and linearity corrections will not contribute significant
errors, and that P = n,;,. In other words, ag = a, = 1, and s, = s¢ = 0, so that
the CCD equation becomes

N,
SNR = ; (9.26)

{w. + g (1 + ) (b + do + ) ¥

Since the CCD equation is often used to estimate the required exposure time, £
we rewrite this as
N.t
SNR = (9.27)

{[N. + n[,,-,t(] + ’;h_—“-i)(bc + &e}}r + np,-x(l -+ fmf',—‘)pl] }5

The dotted quantities give the electron rates for source photons, background
photons, and dark current. The read-noise term is independent of the exposure
time. Solving for the exposure time:

1
_ B+ (B +44Cp

: 5y,

(9.28)

where

Rpix
P, = Ppix (1 + pb)

Nz
~ (SNR)?
B =N, + Py(b. + d)
C= Pbpz

Figure 9.21 illustrates predictions based on the CCD equation in three differ-
ent situations.

The bright-star or photon-noise-limited case, where the counting rate from
the source, N*, exceeds all other terms in the denominator of (9.27). This case
approaches the Poisson result:

SNR=JM=ﬁﬁ

So in the bright-star case, the SNR improves as the square root of the exposure
time, and the observer willing to devote sufficient time can produce
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measurements of arbitrarily high precision. However, actual precision attained
may well be limited by the processes we ignored (e.g. the atmosphere) or the
terms we eliminated in deriving Equation (9.27) — flat-field uncertainties, for
example, scale as the first power of the exposure time, and can eventually

dominate.
In the background-limited case, the background term
n_. : .
ix 1+ p|x> bc +dc
(14 222 b + )

is not insignificant compared to the electron rate from the source. This is
usually the case that is most interesting to the observer, since it describes the
limits of detection in a given situation. In the background-limited case, the SNR
ratio still increases as the square root of the observing time, but now there is a

penalty:

1
SNR = {1 + n,,ix<1 + ";P:) (bc;_’dc)} \/17*\ﬁ= 0+ B )

The factor {1 + B,} becomes large under any occurrence of the following
conditions: low source brightness, high sky brightness, high dark rate, large
digital aperture, or small sky sample. A frequent situation is that of a faint
source and bright sky, the sky-limited case. Remember also that Equation
(9.29) ignores many sources of uncertainty due to both random and systematic
effects. Detection limits derived from this expression should thus be taken to be
optimistic.
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Fig. 9.21 The CCD
equation. The plot shows
the required time to reach
a specified signal-to-
noise ratio in the three
limiting cases discussed
in the text. Note the
logarithmic scale.
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The final case is the one in which the read noise is large. Here the SNR
initially increases linearly with time, but eventually reaches the/z dependence
of either the bright-star or the sky-limited case.

e Special methods for combining images can compensate for the loss of resolution

due to interpolation, and can compensate for bad pixels. Concepts:

nearest pixel resampling bilinear interpolation
interlace pixel flag drizzle
image mask clean image

Summa =) .
vy e Digital aperturc photometry is a technique for measuring apparent brightness from

e Digital images are ordered sets of numbers that can represent the output of an array a digital image. Concepts:

of sensors or other data. Concepts:

digital aperture sky annulus PSr

pixel Sill factor undersampling e The CCD equation gives the theoretical relation between the exposure time and
pixel value gray-scale map detector response expected SNR in digital aperture photometry, given source and sky brightness and
ADU DN

detector and telescope characteristics. Concepts:

e An important advantage of digital images is that they can bz mathematically o] i digitization noise background-limited
manipulated to remove defects and extract information. Concepts: photon-noise limited
image arithmetic data cube RGB color model
CMYK false color image functions
digital filtration image convolution kernel
Gaussian kernel Laplacian kernel boxcar Exercises

unsharp mask median filter

1. Derive expressions for — and compute values of — the coefficients a, b, and ¢ in
o Digital images from a CCD can be processed to remove the effects of the detector

Equation (9.7) for the detector whose calibration data fits the solid line labeled

and telescope: Concepts: “second order” in Figure 9.10b.

R Iges G frame Fes i Bl T 2. The table at left below gives the coordinates and pixel values near a faint star on an
e e T D array image. The small array at right is a sample of the nearby background. Find the x,
CCD gain linearity correction chopping secondary

y coordinates of the centroid of the star image using the criteria outlined in Section

e The flat-field comrection very often limits photometric precision of a detector. 9.4.1 of the text. Use a spreadsheet.

Concepts:
flat-field image twilight flat dark sky flat
dome flat compound flats shift and stare P 1 2 3 4 5 6 7
dither illumination 8 23 20 17 19 18 17 23
correction 7 18 25 20 18 26 18 19 16 19
e Preprocessing images from an array requires subtraction of the dark signal and 6 20 o7 33 30 27 23 18 14 16
) bias, then division by the normalized flat. Treatment of data from infrared arrays is 5 19 31 40 34 28 22 25 13 11
slightly different because of the strong and variable sky background. 4 26 29 53 51 28 28 21 21 18
e Fringing is a variation in the sky background intensity due to interference effects 3 22 26 40 32 33 18 24 16 17
in thin layers of a detector. Fringes can be removed if a flat without fringes is 2 23 30 26 24 26 23 14 20 18
available. 1 16 19 20 18 18 17 16
e Combining images requires alignment, which requires both identification of fea-

ture coordinates and transformation of images. Concepts
genkipid Eamssreqd functian Lt aming 3. Suggest a strategy, similar to that in the latter part of Section 9.4.3, for combining N

image alignment transiation e unaligned images to creale a single mosaic image, Cog, that contains the combined

image mosaic
shift and add 4

trim culiuasy data for every observed location in the collection
magnification distortion - Show that in Equation (9.21), the formulae for the uncertainties in digital aperture

unsharp mask median filter

photometry due to an uncertainty in the linearity correction will be given by
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n

2_ 2_
%= Y (o (Vb)) + 2272 > Pl (7 + X272
xy Db Po

where the quantities are those defined in Section 9.5.3. Explain why uncertainties in
linearity are less troublesome if one is comparing stars of nearly equal brightness.

5. Show that the variance due to flat-field uncertainty in Equation (9.24) is

2
= ¥ (Al yl(nlx,y] + be))’o? + X252
xy Db

6. On a 20-second exposure, a star with magnitude B = 15 produces an SNR = 100 signal

with a small telescope/CCD combination. Assuming this is a photon-noise limited
case, how long an exposure should be required to produce the jame SNR for star with
B=13.6?

7. A star with V"= 21.0 is known to produce a count rate of 10 electrons per second for a

certain telescope/detector combination. The detector read noise is 4 electrons per

pixel, and the dark rate is zero. Compute the exposure time needed to reach a SNR
= 10 under the following conditions:

(a) dark sky and good seeing: aperture radius = 3.5 pixels, sky brightness = 1.4
electrons per pixel per second;

(b) moonlit sky and poor seeing: aperture radius = 5.0 pixels, sky brightness = 4
electrons per pixel per second.

8. A certain CCD has a gain of 2.4 electrons per ADU, a read noise of 7 electrons per
pixel, and a dark current of 2.5 ADU per pixel persecond. In the V filter, the sky
brightness averages 8 ADU per second. An astronomer wishes to observe a nebula
whose average brightness is expected to be 7 ADU per pixel persec per second over
a digital aperture area of 100 pixels. Compute the expected SNR for measurements
of the nebula’s brightness on exposures of (a) 1 second, (b) 10 seconds and (c) 100
seconds.

Chapter 10
Photometry

The classification of the stars of the celestial sphere, according to different orders
of magnitude, was made by ancient astronomers in an arbitrary manner, without
any pretension to accuracy. From the nature of things, this vagueness has been
continued in the modem catalogs.

— Frangois Arago, Popular Astronomy, Vol I, 1851

Astronomers have measured apparent brightness since ancient times, and, as is
usual in science, technology has acutely influenced their success. Prior to the
1860s, observers estimated brightness using only their eyes, expressing the
results in the uncannily persistent magnitude system that Ptolemy' introduced
in the second century. As Arago notes, the results were not satisfactory.

In this chapter, after a brief summary of the history of photometry, we will
examine in detail the surprisingly complex process for answering the question:
how bright is that object? To do so, we will first introduce the notion of a defined
bandpass and its quantitative description, as well as the use of such bandpasses in
the creation of standard photometric systems. Photometry is most useful if it rep-
resents the unadulterated light from the object of interest, so we will take some pain
to describe how various effects might alter that light: spectrum shifts, absorption by
interstellar material, and the characteristics of the observing system. We will pay
particular attention, however, to the heavy burden of the ground-based photometrist:
the influence of the terrestrial atmosphere and the techniques that might remove it.

10.1 Introduction: a short history

The history of photometry is brief compared to that of astrometry, due to the
symbiotic absences of scientific interest and appropriate instrumentation. John

' The magnitude system may very well predate Ptolemy. Ptolemy’s catalog in the Almagest (c.137
CE) may be based substantially on the earlier catalog of Hipparchus (¢.130 BC), which has not
been preserved. It is unclear which astronomer — Ptolemy, Hipparchus, or another — actually
introduced the scale. Moreover, Ptolemy is largely silent on the method actually used to establish
the visual brightness estimates he recorded. Although Ptolemy tends to assign stars integral
magnitudes, 156 stars (out of 1028) are noted as slightly (one third of a magnitude?) brighter
or fainter than an integral value.
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B. Hearnshaw (1996) provides a book-length history of astronomical
photometry up to 1970. Harold Weaver (1946) gives a shorter and more technical
account of developments up through World War II. A definitive history of the
charge-coupled device (CCD) era remains unwritten.

To what degree will two stars assigned the same magnitude by a naked-eye
observer actually have the same brightness? Modern measurements show pre-
telescopic catalogs (e.g. Ptolemy and Tycho, both of whom were more inter-
ested in positions than in brightness) have an internal precision of about 0.5
magnitudes. Even the most skilled naked-eye observer can do little better: al
Sufi in the ninth century devoted great attention to the problem and achieved a
precision near 0.4 magnitudes. At the eyepiece of a telescope, several observers
(e.g. the Herschels and, less successfully, the Bonner Durchmusterung observers
Argelander and Schonfeld) produced better results (0.1 to 0.% magnitudes) with
a method of careful comparison to linked sequences of brightness standards.

After a suggestion by the French physicist Francois Arago (1786-1853), Karl
Friedrich Zollner (1834—1882) built the first optical/mechanical system for
astronomical photometry in 1861. Many similar instruments soon followed.
An observer using one of these visual photometers either adjusts the brightness
of a comparison until it matches that of the unknown star, or dims the telescopic
brightness of the unknown star until it disappears. Zollner’s instrument, for
example, used crossed polarizers to adjust the image of an artificial star pro-
duced by a kerosene lamp.

Because the unknown need not be near a standard sequence in the sky, the
visual photometer was efficient. Moreover, these devices were more precise,
because brains are much better at judging equality (or complete extinction) than
at making interpolations, especially interpolations based on memory of a sequence.
Finally, the visual photometer was more accurate since making a mechanical
adjustment gives a quantifiable measure fairly independent of a particular
astronomer’s eye and brain.

Astronomers got busy. Edward Pickering, at Harvard, for example, built a
two-telescope “meridian photometer,” which used crossed polarizers to equal-
ize the images of two real stars. Between 1879 and 1902, Harvard visual photo-
metrists measured the magnitudes of about 47,000 stars with a precision of
about 0.08 magnitudes, and with an accuracy (based on modern measurements)
of better than 0.25 magnitudes. Astronomers could now confidently examine the
mathematical relationship between brightness and the ancient magnitude scale.
Although several fits were proposed, by 1900 everyone had settled on the now
familiar ““Pogson normal scale”:

Am = -2.5 10g(b1 /bz)

where b, and b, are the brightness of objects 1 and 2. The ancient scale tumed
out to be quite non-uniform in the logarithm: for example, the average bright-
ness ratio between Ptolemy’s magnitude 1.0 and 2.0 stars is 3.6, but between his
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5.0 and 6.0 stars it is 1.3. The telescopic scales (e.g. Argelander) are closer to
Pogson nommal.

While the Harvard visual work progressed, photography matured. In 1850,
William Cranch Bond and John Whipple, also at Harvard, photographed a few
of the brightest stars. The invention of dry photographic plates (1871) increased
convenience and sensitivity; eventually (around 1881) stars were recorded that
were too faint to be seen by eye in any telescope. Many influential astronomers
appreciated the vast potential of this new panoramic detector, and with virtually
unprecedented infernational cooperation launched the Carte du Ciel project to
photograph the entire sky and measure the brightness of every star below mag-
nitude 11.0 (see Chapter 4). Astronomers soon learned to appreciate the diffi-
culties in using photographs for quantitative photometric work, and it was not
until the period 19001910 that several workers (notably Schwarzschild, Wirtz,
Wilkins, and Kapteyn) established the first reliable photographic magnitude
scales. After the introduction (1910—1920) of physical photometers for objec-
tively measuring images on plates, photography could yield magnitudes with
uncertainties in the range 0.015-0.03 magnitudes. Such precision required very
great care in the preparation, processing, and reduction of plate material, and
could usually only be achieved in differential measurements among stars on the
same plate.

In the first sustained photoelectric work, Joel Stebbins and his students at
Illinois and Wisconsin performed extensive and precise photometry, first with
selenium cells (1907), but soon with the vacuum photocell. Poor sensitivity at
first limited the observations to very bright stars, but in 1932, when Albert
Whitford and Stebbins added a vacuum-tube amplifier to the detector circuit,
detection limits on their 0.5-meter telescope improved from 11th to 13th mag-
nitude. The real revolution occurred in the 1940s, when the photomultiplier
tube (PMT), developed for the military during World War II, became the
astronomical instrument of choice for most precision work. It had very good
sensitivity and produced uncertainties on the order 0.005 magnitudes in relative
brightness.

The years from 1950 to 1980 were intensely productive for ground-based
photoelectric work. Harold Johnson was an important pioneer in this era, first
using the RCA 1P21 photomultiplier to define the UBV system, and later using
red-sensitive photomultipliers to define an extended broadband system through
the visual-near-infrared atmospheric windows.

Although astronomers still use photomultipliers for specialized work today,
the CCD and other modern solid-state detectors have superceded them. In the
optical, CCDs have superior efficiency, better stability, and a huge multiplex
advantage (i.e. they can record many objects simultaneously, including stand-
ards). For ground-based differential work, CCD photometric precision on bright
sources is generally set by photon-counting statistics (e.g. Equation (9.25)) or by
uncertainties in calibration. For all-sky photometry and infrared work, the
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atmosphere imposes more serious limitations —0.01 magnitude uncertainty is
often regarded as routine. Photometry from spacecraft with solid-state devices,
on the other hand, offers the potential of superb precision in both differential and
all-sky work. For example, the Kepler space mission for detecting occultations
by extrasolar planets, presently (2010) nearing launch, hopes to achieve uncer-
tainties below 10 pmag over time scales of several weeks.

Observations from space are very, very costly, however, so ground-based
photometry continues to be a central astronomical activity.

10.2 The response function

A photometric device is sensitive over a restricted range of wavelengths called
its bandpass. We distinguish three general cases of bandpass photometry to fit
three different scientific questions.

10.2.1 Types of photometry

Single-band photometry. Suppose, for example, you suspect an extra-solar
planet will move in front of a certain star, and you are interested in the occulta-
tion’s duration and the fraction of the star’s light blocked. You need only use a
single band, since a geometric effect like the occultation of a uniform source
will be identical at every wavelength. You would probably make a sequence of
monitoring observations called a fime series, a tabulation of brightness as a
function of time, and you would tend to choose a wide band to maximize signal
and minimize the required exposure time and telescope size.

Broadband multi-color photometry. On the other hand you might want to
know not just the brightness of a source, but also the general shape of its
spectrum. Broadband multi-color photometry measures an ultra-low-resolution
spectrum by sampling the brightness in several different bands. Although there
is no strict definition, a “broad” band is generally taken to mean that the width
of the band, A4, divided by its central wavelength, A, is greater than 7%—10% ,
or, equivalently, the spectroscopic resolving power R = 1/AA < 10—15. Broad-
band systems choose bands that admit the maximum amount of light while still
providing valuable astrophysical information. For example, the UBVRI system,
the most common broadband system in the optical, uses bandwidths in the range
65-160 nm (R = 4-7). It provides information on surface temperature for a wide
variety of stars, and more limited information on luminosity, metal content, and
interstellar reddening.

The terminology recognizes each band as a “color”, so “two-color photo-
metry” measures magnitudes in two separate bands: B and V, for example. For
both historical and practical reasons, one traditionally reports the results of
n-color photometric measurements by giving one magnitude and (n — 1) color
indices. The magnitude tells the apparent brightness, and the indices tell about

S *
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other astrophysical variables like surface temperature. The term “color”, as
shorthand for “color index” has thus come to have a second meaning — color
is the difference between two magnitudes. So for example, the results of “fwo-
color photometry” in B and ¥ will be reported as a V magnitude and one (B V)
color.

Narrow- and intermediate-band photometry. Although multi-color narrow-
band photometry (roughly R > 50) can provide information about the shape of
the spectrum, its intent is usually to isolate a specific line, molecular band, or
other feature.’The strategy here exchanges the large signal of the broadband
system for a weaker signal with more detailed spectroscopic information. Com-
mon applications include the measurement of the strength of absorption features
like Balmer-alpha or sodium D, or of the ratio of the intensities of emission lines
in gascous nebulae. Intermediate-band photometry (15 < R < 50) measures
spectroscopic features that cannot be resolved with broader bands, but avoids
the severe light loss of the very narrow bands. Examples of such features include
discontinuities in spectra (for example, the “Balmer discontinuity” due to the
onset of continuous absorption by hydrogen in stellar atmospheres at a wave-
length of 364.6 nm), or very broad absorption features due to blended lines or
molecular bands (for example, the band due to TiO in the spectra of M stars that
extends from 705 to 730 nm).

10.2.2 Magnitudes

Recall that for some band (call it P), the apparent magnitude of the source as
defined in Chapter 1 is just

mp =-2.5log(Fp) + Cp = —2.5 log/Rp(/l)f,ldl + Cp (10.1)
0

Here mp is the bandpass magnitude; Fp is the energy flux (the irradiance) within
the band; f; is the monochromatic flux (also called the flux density or the
monochromatic irradiance — it has units of watts per square meter of area per
unit wavelength, or W m™). We choose the constant Cp to conform to some
standard scale (e.g. the magnitude of Vega is zero in the visual system). The
function Rp(/) describes the response of the entire observing system to the
incident flux: it is the fraction of the energy of wavelength A that will register
on the photometer. We usually assume that f; is measured outside the Earth’s
atmosphere.

Photon detectors count photons, rather than measure energy directly. Recall
that the monochromatic Pphoton flux (1) (number of photons per second per
SQuare meter of area per unit wavelength) is related to f;:

B) = -
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Photon detectors do not directly measure the quantity Fp in Equation (10.1) but
report a signal proportional to the photon flux within the band:

@ = O/ Rep(A)p(A)eth = - 0/ Re(A) £,2d1

Here Rpp(4) is the photon response: the fraction of photons of wavelength 1
detected by the system. This suggests that photon-counting detectors and
energy-measuring detectors will measure on the same magnitude scale if

mp = —2.5 log((Dp) + Cpp = —2.510g(Fp) + Cp
which requires

Rp(4

Rep(A) #

Although directly measured magnitudes are bandpass magnitudes, it makes

perfect sense to talk about and compute a monochromatic magnitude. This is
defined from the monochromatic flux:

heg(2)
A

my = —2.5log(f7) + C'(A) = —2.51og + C'(4) (10.2)
Here again, the value of the function C’(A)is arbitrary, but is often chosen so that
the monochromatic magnitude of Vega or some other (perhaps fictitious) stand-
ard is a constant at every wavelength. In this case, C'(1)is a strong function of
wavelength. Sometimes, however, the function C’(1) is taken to be a constant,
and the monochromatic magnitude reflects the spectrum in energy units. You
can think of the monochromatic magnitude as the magnitude measured with an
infinitesimally narrow band. Conversely, you can think of intermediate or
broadband photometry as yielding a value for m; at the effective wavelengths
of the bands, so long as you recognize the energy distribution referenced is one
of very low spectroscopic resolution.

10.2.3 Response function implementation

How is a band response implemented in practice? Both practical limits and
intentional controls can determine the functional form of the responses Rp(4)
or Rpp (/1) 5

The sensitivity of the detector clearly limits the range of wavelengths acces-
sible. In some cases, detector response alone sets the bandpass. Ptolemy, for
example, based his magnitude system simply on the response of dark-adapted
human vision, sensitive in the band 460-550 nm. In other cases, the detector
response defines only one edge of the band. Early photographic magnitudes, for
example, had a bandpass whose long-wavelength cutoff was set by the insensi-
tivity of the photographic emulsion longward of 450 nm.

10.2 The response function

Telescope focal plane
and entrance aperture

Band 1 aperture

Disperser Band 2 aperture

A filter —an element placed in the optical path to restrict transmission — is the
usual method for intentionally delimiting a band. A bandpass filter defines both
ends of the band by blocking all wavelengths except for those in a specific range.
A filter can serve as a high-pass or low-pass element by defining only the lower
or upper cutoff of a band. Filters that limit the transmission of all wavelengths
equally are termed neutral-density filters.

Another strategy for photometry is to use a dispersing element to create a
spectrum. Sampling discrete segments of a spectrum with one or more photo-
detectors is equivalent to multi-band photometry. Such instruments are termed
spectrophotometers. A spectrophotometer (see Figure 10.1) generally defines
bandpasses by using apertures, slots, or detectors of the proper size to select the
desired segment of the spectrum. Multi-pixel solid-state detectors like CCDs
blur the distinction between a spectrophotometer and a spectrograph: taking a
CCD image of a spectrum is equivalent to letting each pixel act as an aperture
that defines a band.

For ground-based observations, atmospheric transmission, S,(1), limits
the wavelengths that are accessible, and may completely or partially define a
response function. Absorption in the Earth’s atmosphere set the short wave-
length cutoff of early photographic photometry at 320 nm, for example. In the
infrared, absorption by water vapor is significant and variable. Figure 10.2
shows the approximate atmospheric transmission in the near infrared from 0.8
to 2.6 um expected at a high elevation site. Also marked on the plot are the half-
widths of the Johnson J and K bands as defined by filter transmission only. In
these bands the atmosphere will set the long cutoff of J and the short cutoff of
the K band, and variations in the atmosphere may change the shape of the
overall photometric response function.

Normally, however, magnitudes are defined outside the Earth’s atmosphere,
and an astronomer must usually remove atmospheric effects during data reduction.

As an example of response definition, Figure 10.3 shows how four different
factors interact to produce the response of the Johnson U band:

1. The transmissions of the filter — Corning glass number 9863 in Johnson’s original
definition.
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Fig. 10.1

A spectrophotometer.
Each aperture defines the
range of wavelengths
that pass to its detector. It
is possible to alter the
wavelengths sampled by
rotating the dispersing
element or translating the
apertures. In this case,
the instrument is known
as a spectrum scanner.
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Fig. 10.2 Atmospheric
transmission in the near
infrared. Transmission
curve is based on a
model of the atmosphere
at an elevation of 2.0 km,
and will change with
changes in water-vapor
content. Light-gray lines
locate the Johnson J and
K photometric band-filter
sensitivity (FWHM). Dark-
gray lines show the
sensitivity of the MKO
filters for J, H, and K. The
Johnson band definitions
are much more
susceptible to water-
vapor variation than are
the MKO definitions.

Fig. 10.3 Response
function (shaded) for the
Johnson U band. The
function R(J) is the
product of {1) the filter
transmission, (2) the
detector quantum
efficiency with either a
quariz or a glass window,
and (3) the transmission
of the atmosphere (two
extremes, 4 mm and

2 mm of Og, are
indicated). The telescope
and optics transmission
usually do not affect the
shape of R(1).
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2. The quantum efficiency (QE) of the detector as a function of wavelength. In this case,

the detector was a particular photomultiplier, the RCA 1P21 (now obsolete), which
had an 84 photocathode. The glass window of early tubes was later replaced with
fused quartz, changing the short wavelength transmission.

3. The transmission of the atmosphere, S,i(4). Photometry in this band assumes that the

object is at the zenith, and that the ozone partial pressure is 3 mm. Changes in ozone
concentration or zenith angle change the shape of Ry(1). For a PMT with a quartz
window, the atmosphere sets the short wavelength cutoff. This feature of the U-band
definition can be troublesome.

10.2 The response function

4. Transmission of the telescope optics. This is not plotted in the figure, since the
reflectivity of freshly deposited aluminum is nearly constant in this region, with a
value of around 0.92. Use of glass lenses, windows, or silver surfaces would change
the shape of the response function.

10.2.4 Response function description

You will encounter various terms used to describe the response function.
For example, for most response functions, there will be a single maximum value,
Ruax, Which occurs at the peak wavelength ... Likewise, there are usually
(only) two half-maximum points. These can be taken as specifications of the
wavelengths at which transmission begins and ends, Ajow and Apigh:

R(Apoak) = Ronax

R(Alow) = R(;I'high) . Rmax/2

Given the half maxima, we can then define one measure for the width of the
response by computing the full width at half-maximum:

FWHM = lhigh e Alow

The half-maximum points also determine the central wavelength of the band,
which may be more representative of its mid point than Agcax:

Acen = (/1[ + Ahigh)/z

A somewhat more sophisticated and possibly more useful measure of the width
of a particular response function is the bandwidth:

1
Wo = — [ R(A)dA
7 | R4

Likewise, a somewhat more sophisticated measure of the center of a band is its
mean wavelength, which is just

4 = LA R
*T TR

Figure 10.4 illustrates these relations. For a symmetric function,
Apcak = Accn = j-0
Perhaps even more informative is the effective wavelength of the response to a
particular source. The effective wavelength is a weighted mean wavelength

(weighted by the source flux) and indicates which photons most influence a
particular measurement:

_ [A-fi - R(A)dA

lcﬁ
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Fig. 10.4 Definitions of
the middle and width of a
band. The curve shows
the function R(A). The
mean wavelength divides
the area under the curve
into two equal parts
(shaded and unshaded).
The dark-gray rectangle
has a width equal to the
bandwidth and an area
equal to the area under
the curve.

Fig. 10.5 (a) Effective
wavelengths for two
different sources in the
same band. The solid
curves apply to a hot
source, and the dotted
curves apply to a cool
source with the same
magnitude in the band.
(b) Definition of the
isophotal wavelength:
the area of the hatched
rectangle is the same as
the shaded area under
the curve. The dashed
curve is the response
function.
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Figure 10.5 illustrates that different sources will in general have different effec-
tive wavelengths.

It is tempting to think of any bandpass measurement as equivalent to a
measurement of the monochromatic flux at wavelength Ao multiplied by the
bandwidth, W,. This is nearly correct in practice, and for broadband photometry
of stars (provided spectra are sufficiently smoothed) using this equivalence
produces an error of a percent or less. To be strictly accurate with such an
equivalence, we need to introduce yet another definition for the “middle” of
the band. This one is called the isophotal wavelength, diyp,. The isophotal wave-
length is the one for which we have

o fin = 1?2 / £ - R

As with the effective wavelength, the exact value of the isophotal wavelength
will depend on the spectrum of the source.

10.2 The response function

o 4~ Mog =—1.92 +AC
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10.2.5 Color indices

Multi-band photometry can measure the shape of an object’s spectrum. It
is convenient to think of the bands as sampling the monochromatic flux of
a smoothed spectrum at their isophotal wavelengths. For example, Figure
10.6 shows the spectra of several blackbodies whose temperatures range from
1600K to 12,000 K. The vertical scale of the figure shows the monochromatic
magnitude in a system in which the constant in Equation (10.2) is independent
of wavelength. Remember, this is not the usual case in astronomical photo-
metry, where the spectrum of some standard object (e.g. Vega, which is similar
to a blackbody with temperature of 9500 K), would be a horizontal line in a plot
of m; as a function of 4. In the figure, we assume two bands, one with a mean
wavelength at 0.4 pm, the other at 0.8 pm. It is clear that the arithmetical differ-
ence between these two magnitudes for a particular spectrum depends on the
average slope of the spectrum, which in turn depends on the source’s temper-
ature. The convention is to speak of the difference between any two bandpass
magnitudes used to sample the slope of the spectrum as a color index.

For blackbodies, at least, the color index is not just useful, but definitive —its
value uniquely measures the body’s temperature. By convention, you compute
the index in the sense:

index = m(shorterd) — m(longerd)

As mentioned earlier, astronomers usually symbolize the color index as the
magnitude difference, sometimes enclosed in parenthesis. In the case of Figure
10.6, we might write the index as (mg4 — mog). In the case of the Johnson—
Cousins red and infrared bands, the index would be written (mg — mr), or more
commonly R —I.

The behavior of the color index at the long and short wavelength extremes of
the Planck function is interesting. In the Rayleigh—Jeans region (i.e. where
AkT >> hc) you can show that
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Fig. 10.6 Color indices
for blackbodies. Curves
are generated by taking
the logarithm of the

“Planck function. Note that
monochromatic
magnitudes increase
downwards. Spectra
have been shifted
vertically by arbitrary
amounts for clarity. In
this figure, AC= 0.
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Fig. 10.7 Definition of
indices to measure the
strength of (a) a spectrum
discontinuity, and (b) an
absorption line.
Monochromatic
magnitudes are defined
so that the constant in
Equation (10.2) is
independent of
wavelength.
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my = logT + C(2) (10.3)
so that the color index becomes
(m;,I — mh) = C(/l]) — C(/lz) = AC

a constant independent of temperature. For example, in the Johnson broadband
system, a blackbody of infinite temperature has color indices

(U-B)= —133,(B—V) = —0.46

At short wavelengths, the Wien approximation for the surface brightness of a

blackbody holds:
2hc? he y
B(/{, T) NTGXP(—M—T> 3

So the color index is
afl 1
(mll —my,} = T </1_1— Z) + C(ll) — C().z) (104)

Thus, at very small temperatures or wavelengths, the index is a linear function
of 1/T.

10.2.6 Line and feature indices

Real objects almost always have more complex spectra than do blackbodies,
with features of astrophysical significance that may include absorption and
emission lines, bands, and various discontinuities. Multi-band photometric
indices can measure the strength of such features.

Two bands often suffice to measure the size of a discontinuity or the strength
of a line, for example. In Figure 10.7a, bands C and D sample the continuum on
the short and long wavelength sides of a sharp break in a spectrum. The index
(C—D) will be sensitive to the size of the break — but note two features of the index:

First, the actual relation between the size of the break and the numerical
value of the (C — D) index depends on the constants employed in the definition

10.2 The response function

of the bandpass magnitudes in Equation (10.1). It might be convenient to have
(C—D) = 0 when the break vanishes, but this may violate the convention that all
indices should be zero for the spectrum of some standard object. (Examine
Figure 1.5 — Vega has several non-zero spectrum discontinuities, yet all its
indices are zero in some systems.)

Second, positioning the bands is important. The sensitivity of the index to the
size of the break will diminish if either bandpass response includes light from
the opposite side of the break. Likewise, if a band is located too far away from
the break, unrelated features in the spectrum can affect the index. Obviously, it
will be easier to position narrow bands than wide bands, but narrow bands give
weaker signals.

A similar index can measure the intensity of an absorption or emission line
(Figure 10.7b). Here one narrow band is centered on the feature, and the other on
the nearby continuum. The magnitude difference measures the line strength.
This strategy is common in detecting and mapping objects with strong emission
lines in their spectra: for example, the astronomer takes two CCD exposures —
one through a filter centered on the emission line in question, the second through
one centered on the nearby continuum. Digital subtraction of the two registered
and properly scaled images produces zero signal except in pixels where a source
is emitting radiation in the line.

Figure 10.8 illustrates an alternative strategy for measuring a line index. Two
bands — one broad, the other narrow — are both centered on the line. The narrow
band is quite sensitive to the strength of the line, while the broad band is
relatively insensitive, since most of the light it measures comes from the con-
tinuum. The index

line index = Mparrow — Mwide

tracks the strength of the absorption, in the sense that it becomes more positive
with stronger absorption. One widely used line index of this sort is the f index,
which measures the strength of the Balmer beta line of hydrogen, usually useful
for luminosity or temperature classification of stars.

Smoothed
T == spectrum
ml ~
l W-N)
Isophotal
"—_J__ wavelength of W

—| N P —>
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Fig. 10.8 A line index
computed from wide and
narrow bands centered
on the same absorption
line.
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Fig. 10.9 Three bands
can measure the
curvature of the
spectrum. In both {a) and
(b), the index 2(X - C)
tracks the
monochromatic
magnitude’s departure
from linearity.
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Finally, consider a third kind of index. Three bands can measure the curvature
(i-e. the second derivative, rather than the first) of a spectrum. Curvature can
arise on a relatively small scale because of a sharp absorption or emission line,
or on a large scale because of broad or diffuse features (molecular bands in
gases, or absorption features in the reflection spectra of crystalline solids, for
example). Figure 10.9 illustrates two situations with three (a) equally and (b)
unequally spaced bands at a short, central, and long wavelength (S, C, and L). If
we consider just the monochromatic magnitudes, and if the bands are equally
spaced as in Figure 10.9a, the index

curvature = (mg —mc) — (mc —my) =S + L —2C

will be zero if the logarithmic spectrum is linear, and positive if the central band
contains an absorption feature. The curvature index depends on the difference
between two color indices. In practical systems the index will still track curva-
ture even if bands are not equally spaced, and even if C’(4) in Equation (10.2) is
not a constant.

10.3 The idea of a photometric system

The term photometric system implies at least two specifications:

1. The wavelength response for each band — that is, the shape of the function Rp(4) in
Equation (10.1)
2. Some method for standardizing measurements made in those bands. This is important
for two reasons:
e Each observer needs to know the value for the constant C in Equation (10.1) that
will assure agreement of his magnitudes with those of all other observers.
o The differing hardware produces some variety in the response functions in practice,
so a method for standardization must allow correction of the inevitable systematic
effects due to imperfect matching.

The first specification, that of Rp(4), determines the instrumental or natural
system. The first and second together determine the standard system.

) 4

10.4 Common photometric systems

Observations in the natural system alone can be quite useful (e.g. determining
the period of a variable star), but only by placing magnitudes on the standard
system can two astronomers confidently combine independent measurements.

Standardization might involve observations of laboratory sources, e.g. a
blackbody of known temperature and therefore known absolute flux in W m ™2,
Almost always, though, a single astronomical object or set of objects is a much
more practical standardizing source. Almost all standard systems today rely
upon some network of constant-brightness standard objects distributed around
the sky. If everyone agrees on a list of stars and their corresponding magnitudes,
anyone can calibrate measurements made in their instrumental system by
observing the standards and the unknowns with the same procedures. Because
systematic differences will most likely arise if the spectrum of the star observed
is different from the spectrum of the standard star, most systems strive to define
a set of standards that includes a wide variety of spectral types.

As we have seen with the Johnson U, K, and J bands, the definition of the
bandpass sometimes involves the atmosphere. Atmospheric absorption, how-
ever, is variable, and removing this variation should be part of the standardiza-
tion procedure.

Because standardization is so essential to a photometric system, some astron-
omers have devised closed photometric systems, in which a relatively small
group of observers carefully controls the instruments and data reduction, max-
imizing internal consistency. Many space-based observations (e.g. HIPPAR-
COS), and many ground-based surveys (e.g. the Sloane Digital Sky Survey)
constitute closed systems. An open photometric system, in contrast, is one in
which all astronomers are encouraged to duplicate the defined natural system as
best they can, and, through reference to a published list of standard stars, add to
the pool of observations in the system.

10.4 Common photometric systems

Astronomers have introduced several hundred photometric systems. Bessel
(2005) gives an extensive review of the most common systems. Here we exam-
ine only a few of the most widely used as an introduction to the operation of
most.

10.4.1 Visual and photographic systems

The dark-adapted human eye determines the band of the visual photometric
system. In the earliest days of astronomy, the standardization procedure required
that magnitudes measured in the system be consistent with the ancient catalogs
(e.g. Ptolemy, al Sufi, and Bayer). The introduction of optical/mechanical visual
photometers led to the establishment of standard sequences of stars, including
(initially) the north polar sequence and (later) many secondary sequences (the
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Table 10.1. Bandpasses of historical importance

Band Symbol Band definition Apeak, N FWHM
Visual Myis Mesotopic® human eye 515-550 82-106
International mpg, IPg  Untreated photographic 400 170
photographic emulsion + atmosphere

international Mgy, IPv Orthochromatic 550 100
photovisual emulsion + yellow filter

* Visual photometry of stars uses a mixture of photopic (color, or cone) and
scotopic {rod) vision, with the shift from cones to rods occurring with
decreasing levels of illumination. The effective wavelenglh of the eye thus
shifts to the blue as light levels decrease (the Purkinje effect); see
Appendix B3.

48 Harvard standard regions and the 115 Kapteyn selected areas were perhaps
the best studied).

In the early twentieth century, astronomers defined two bands basejd on the
properties of the photographic emulsion (Table 10.1). The poor properties of jche
photographic emulsion as a photometric detector, and lack of very specific
definitions, limited the success of this system. The international photographic
band is sensitive in the near ultraviolet-blue region. The response of the inter-
national photovisual band, somewhat fortuitously, roughly corresponds to thflt
of the visual band (i.e. the human eye, sensitive to green—yellow). The IAIi in
1922 set the zero point of both magnitudes so that 6th magnitude AQ V stars in
the north polar sequence would have (roughly) the same values as on the old
Harvard visual system. This meant that the color index,

colorindex = npg — mpy

should be zero for A0 stars, negative for hotter stars, and positive for cooler stars.

Many other photographic systems exist. The photovisual magnitude' origi-
pally depended on “orthochromatic™ plates, which were made by treating the
emulsion with a dye to extend its sensitivity to about 610nm. Other dyes
eventually became available to extend photographic sensitivity to various cut-
offs ranging through the visible and into the near infrared. Twentieth-century
astronomers devised many filter-emulsion combinations and set up standard

2 A0 V is the spectral type of Vega, which is not in the north polar sequence. Because of the cﬂﬂ_&’
decision to keep visual magnitudes roughly consistent with the ancient catalogs, the phologﬂlphfc
and photovisual magnitudes of Vega tumn out to be close to zero. The importance of Vega stems 10
part from its brightness, which makes it a good candidate for absolute (i.e. watts per square meter
per meter of wavelength) measurement of specific irradiance.

o R——————————

10.4 Common photometric systems

star sequences in a variety of photography-based systems. All these are mainly
of historic interest.

10.4.2 The UBVRI system

By far the most widely used ground-based photometric system prior to the present
has been the Johnson—Cousins UBVRI system (Table 10.2 and Figure 10.10).
Johnson and Harris (1954) defined the UBV portion first, based on the response
of the RCA 1P21 photomultiplier, a set of colored glass filters, and a list of
magnitudes for a relatively small number of standard stars scattered around the
celestial sphere. The V band closely corresponds to the international photovisual
band and its zero point was set so that ¥ = m,, for the standards in the north
polar sequence. The U and B bands correspond to short- and long-wavelength
segments of the photographic band, and to be consistent with the international
system, their zero points are set so that the colors U— B and B — ¥ are zero for
A0 V stars.

After some pioneering work at longer wavelengths by Stebbins, Kron and
Whitford, Harold Johnson and his collaborators in the period 1960~1965 extended
the UBV system to include bands in the red (R;) and near infrared (1), as well as
the longer infrared bands (JHKLMNQ) discussed in the next section. Modem
work with CCDs, however, has tended to replace the R; and Iy with the R and I
bands specified by Cousins and his collaborators (sec Table 10.2 for the differ-
ences). In current practice, the lists of Arlo Landolt (1983, 1992) and Menzies
et al. (1989, 1991) define the standard stars for the UBV(RI)¢ system.

Modem CCD observers sometimes have difficulty replicating the original
photomultiplier-based instrumental system. A complicating factor is the great
variation in CCD spectral response due to differing surface treatments, gate
material, gate structure, backside illumination, etc. The U band causes the

Table 10.2. The Johnson-Cousins UBVRI system. The R, and I, data are
from Colina et al. (1996). All other widths are from Bessel {1992). Effective
wavelengths and monochromatic fluxes for a zero-magnitude, zero-color
star are from the absolute calibration of Vega and Sirius by Bessell et al.
{1998). Vega has V = 0.03 on this system

U B v Rc R, I Iy
Aot NI 366 436 545 641 685 798 864
FWHM 66 94 88 138 174 149 197
/1 at Ay in units of 417 632 374 226 19.2 114 9.39
10" "?Wm 2mnm™
for V=0
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Fig. 10.10 Normalized
response functions for
the UBVRI system. Also
shown are the
monochromatic
magnitudes for a
representative A0 and G2
dwarf. Note the
importance of the Balmer
discontinuity near 370
nm in the AO spectrum,
and the break due to
metal absorption near
400 nm in the G2
spectrum.
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most trouble, partly because it is defined by the atmosphere at a particular
altitude (see Section 10.2.3), and partly because of generally poor CCD
response in the ultraviolet. Close matches are possible with a good knowledge
of the individual CCD response and a careful choice of filters. For details, see
Bessel (1990).

This multi-band system was designed with the rough spectral classification of
stars in mind. Figure 10.10 shows the responses of the normalized UBV(RI)c
bandpasses superimposed on spectra of an AQ and a G2 dwarf (i.e. matching,
respectively, Vega and the Sun). The U — B index is clearly sensitive to the
Balmer discontinuity (present very obviously in the A star at 370 nm, and much
reduced in the G star). The discontinuity —and hence the U— B index — depends
upon luminosity, at least for hot stars. The other indices are primarily sensitive
to temperature (and therefore spectral type). The B— ¥ color is more sensitive to
metal abundance than are V' — R or R — I, and fails as a useful index for M stars
because of molecular band absorption. (In astrophysics, a “metal” is any ele-
ment other than hydrogen or helium.) Because of its long baseline and relative
insensitivity to chemical abundances, the ¥ — I index is the most purely temper-
ature-sensitive index in this system (¥ — K is even better, for the same reason).
Appendix A10.1 tabulates the colors of various spectral types. The system is
useful for measuring the photometric properties of objects besides normal stars:
Solar System bodies, supernovae, galaxies, and quasars have all been extensively
observed.

10.4.3 The broadband infrared system: JHKLMNQ

The broadband infrared system (Table 10.3) might be regarded as an extension
of the UBVRI system, and shares a common zero point (so the colors of an un-
reddened AQ V star are zero). Detectors in this region cannot be silicon CCDs,
but must be infrared arrays or single-channel infrared-sensitive devices.

10.4 Common photometric systems

Table 10.3. The broadband infrared system. JHKL from Bessell et al. (1998},
M band from Rieke and Lebofsky (1985}, and N and Q from Rieke et al.
(1985)

J H K L M N Q

Aesr, L for AO stars 1.22 1.63 219 3456 48 106 21
FWHM 0.213 0.307 0.39 0472 046 3-6 6-10
fi at Aegr in unitsiof
10 "Wm2pm™' 315 14 396 7.1 2.2 096 0.0064
for V=0

Table 10.4. Mauna Kea (MKO) filter characteristics. Central wavelengths of
L’ and M’ are significantly different from L and M, hence the renaming.
Note that these are filter characteristics: actual bandpass responses will
depend on detector, atmosphere, telescope optics, etc

J H K L’ M’
Aeens LM 1.24 1.65 2.20 3.77 4.67
FWHM 0.16 0.29 0.34 0.70 0.22

Subtraction of background can be a very serious problem in the infrared, as
discussed in the previous chapter.

A more important complication is the fact that, for the ground-based infrared,
bandpass definitions can depend very critically on atmospheric conditions
(mainly the amount of water vapor encountered along the line of sight). Differ-
ent observatories with identical hardware can experience different infrared
window sizes and shapes if they are at different altitudes (extending to space
observatories). The same observatory can experience similar bandpass varia-
tions due to changing humidity.

Different observatories have thus defined infrared bands differently, and the
values in Table 10.3 merely represent the typical choices prior to the twenty-first
century. The IAU in 2000 recommended a preferred natural system for JHK —
the Mauna Kea Observatory near-infrared system (see Table 10.4). The MKO
System attempts to minimize sensitivity to water vapor while optimizing the
signal-to-noise ratio (SNR), usually by narrowing the FWHM.

A second important characteristic of infrared photometric systems stems
partly from their relative immaturity: the standard star magnitudes for these
bands are not as well defined as in the CCD region. The situation is best in
the JHK bands, where at least three different and largely non-overlapping (and
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Table 10.5. The four-color and B system

u \% b \ Hgp Hp
Name Ultraviolet  Violet Blue Yellow wide Narrow
Aetr, N for AO 349 411 467 547 489 486
stars
FWHM, nm 30 19 18 23 15 3.0

still evolving) lists of standard stars have been in copmon use. These are
beginning to converge on a common system consistent with measurements
derived from the MKO-near-infrared bandpasses.

10.4.4 The intermediate-band Strémgren system: uvbyp

Bengt Stromgren designed this intermediate-band system in the late 1950s, and
David Crawford and many others developed it observationally in the 1960s and
1970s. They published several lists of standard stars during these years. The
system avoids many of the shortcomings of the UBV system, and aims to
classify stars according to three characteristics: temperature, luminosity, and
metal abundance. Classification works well for stars of spectral types B, A, F,
and G, provided the photometry is sufficiently accurate. Photometrists fre-
quently supplement the four intermediate-band colors, uvby, with a narrow band
index, B, which tracks the strength of absorption in the Balmer beta line. The §
index greatly improves the luminosity classification for hotter stars, and is a
good temperature indicator for cooler stars.

Emission in all of the four intermediate bands depends on temperature, but
in addition, emission in the u and v bands is depressed by the presence of
metals in a star’s atmosphere. Also, the u band is depressed by the Balmer
discontinuity, a temperature-dependent feature which is strongest for A0 stars,
but which also depends on luminosity. To indicate astrophysical information,
then, Strémgren photometry is generally presented as a y magnitude, a (b — )
color, and two curvature indices. The (b — ) color closely tracks temperature in
the same way as the Johnson BV (in fact, b—y = 0.68(B — V) over a large range
of stellar types), but (b—y) is somewhat less sensitive to abundance effects and is
more useful at lower effective temperatures than is B — V. The two curvature
indices are

a=u—-v)—(v—->)

my = (v—b)—(b-y)

Y
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The ¢, index measures the strength of the Balmer discontinuity, and in
combination with temperature from (b — y) yields information about luminosity.
It is an improvement over the Johnson (U — B), partly because the U filter
straddles the Balmer discontinuity. The m; index measures metal abundance.
The precise relationships between the indices and the astrophysical parameters
are more complex than suggested here, but they have been well calibrated for
spectral types hotter than KO.

10.4.5 Other systems

Many other photometric systems find less widespread use than those just
described, and it is helpful to describe a few examples.

Photometry from space need not contend with any of the atmospheric and many
of the background issues that complicate photometry from the ground. Within the
parameters of a given detector, space observatories permit much greater freedom
to base bandpass design on purely astrophysical considerations. The NICMOS2
camera on the Hubble Space Telescope (HST), for example, carried about 30
filters, many centered at bands completely inaccessible from the ground.

It is nevertheless very important to be able to tie space observations to
ground-based measurements. The HIPPARCOS space mission, for example,
used a two-filter broadband system closely related to B and V, while some of
the NICMOS filters correspond to the JKLMN bands. The primary CCD
camera for the HST (the WFPC/WFPC2), had slots for 48 filters, but those
most commonly used closely matched the UBVRI system. The HST standard
magnitudes, incidentally, are defined so that a source with constant f, has zero
colors.

We can expect the introduction of novel ground-based systems to continue.
New CCD-based systems might even replace well-established photomultiplier-
based systems. For example, the Sloan Digital Sky Survey (SDSS), the auto-
mated ground-based program that is expected to produce photometry for over
10% stellar and non-stellar objects, uses a five-color system (see Table 10.6)
designed to make optimal use of silicon CCD sensitivity. The SDSS database
will be larger than all the PMT-based UBVRI observations accumulated since
the 1950s. Since the SDSS colors give as good or better astrophysical informa-
tion, the SDSS may (or may not) eventually displace UBVRI as the dominant
broadband system in the visual.

Table 10.6. The bands for the SDSS five-color system

’ ’ Ha 0

u’ g r i z
Aeen, NM 354 a77 623 762 915
FWHM 57 139 137 153 95
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10.5 From source to telescope

...Slowly the Emperor returned —
Behind him Moscow! Its onion domes still burned. . .
Yesterday the Grand Army, today its dregs!

... They went to sleep ten thousand, woke up four.

— Victor Hugo, Russia, 1812, Trans. Robert Lowe]]
A grand army of photons leaves a source, but many are lost on their march to oyr
telescope. This section follows one regiment of that army to consider its fortunes
in detail. The goal of photometric reduction will be to reconstruct the original
regiment from its dregs —to account for all losses and transformations during its
long journey in the cold.

At least four different effects can alter the photons on their way to the
telescope:

o wavelength shifts

e extragalactic absorption

e Galactic and Solar System absorption
e atmospheric absorption.

10.5.1 Wavelength changes

The regiment that leaves the source is ¢r(Ag)dAg, that is, all those photons with
wavelength between Ay and Ag + dAg emitted in one second in the direction that
would place them in a unit area of our telescope aperture. The subscript E just
means “emitted”. The dregs of the regiment are the members of that original
group that actually survive at the top of our atmosphere, which we will call
@(A)dA. In the general case, we allow for the possibility that both numbers and
their wavelengths can change.
We first consider the consequences of wavelength change by itself. Because
of the Doppler effect, or because of the expansion of the Universe, or because of

various relativistic effects, the wavelength of each photon on arrival may differ
from its original value, Ag. The new value is given by

)-0 = (1 + Z)/lE
where z is the redshift parameter (z = (1, — 1g)/Ag) of the source. Because of
this wavelength change, the photons emitted into wavelength interval dig will
arrive spread out over wavelength interval d, = (1 + z)dAg. Since we con-

sider only the effect of wavelength change, and ignore the absorption effects
listed above, we can say that the number of photons is conserved, that is:

#(A)dA = ¢g(Ae)dAg
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We have dropped the subscript for the observed wavelength. Thus, the observed
and emitted monochromatic photon flux are related by (see Figure 10.11)

1 A A
N o

The function f; is the observed monochromatic flux density of Chapter L.
Although photon number is conserved, the monochromatic flux density is not:

Jele) =fE(1 iZ> = hc‘beuE) = (1 + 2% (10.6)

In practice, we must deal with an observer who makes magnitude measure-

ments in a band. An observer who uses a bandpass with photon response R(A)
will measure the magnitude

my = —2.510g/R(/1)@d)[ + Cr

Cr = —2.5 log/R(/l)%d/l

where g, is the spectrum of a photometric standard of magnitude .zero.
We would like to understand how mp relates to a magnitude measured for
these same photons before their wavelength shift. These photons began their
journey in a wavelength band different from R; call this band QO (again, see

Figure 10.11). Measuring a magnitude in band Q on the unshifted spectrum
gives
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Fig. 10.11 Wavelength

shifts and photometry.
The upper panel shows
an unshifted spectrum,
and the lower panel
shows the same
spectrum shifted in
wavelength by a redshift
parameter z=0.2.
Photons originating in
area A arrive in area B.
Photons measured in
band R originate in
bandpass Q.
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mg = —2.510g/Q(A)¢ET(A)dl + Cq
= -25 log[(l + z)/Q(A)&(l;—Z))dl} + Cq
Co = —2.5log [ / o) %u]

If mgp = mq then the observation in band R directly gives the magnitude the
source would have in band Q if there were no shift. This equality is generally
possible if R has the shifted shape of Q (i.e. R((1 + z)4) = Q(A)). However,
since R and Q must often be standard bands in some system, it is hard to meet
this condition, so we must consider the difference:

SOy S 2

mp —mg = 2.5log(l +z) + Cg — Co + 2.51o 10.7
R — Mg (1+z)+ G —Cqy g[ TR ] (10.7)

For objects in our own galaxy, z is quite small, and one almost always uses
R(4) = O(4), Cr = Cq. In that case, the first three terms in Equation (10.7) add to
zero. The last term describes the effect of photons shifting into, out of, and
within the band. In the case of narrow bands near sharp spectral features, even
small Doppler shifts can produce large differences between ¢((1 + z)1) and
¢(4). In such a case, one could compute mg from an observed mg using
Equation (10.7), provided enough is known about ¢(4).

For distant objects, z becomes large because of the expansion of the
Universe. Equation (10.7) again suggests that it should be possible, given
knowledge of z and ¢(4), to use an observed bandpass magnitude to compute
the magnitude that would be observed (in the same or in a different band) if the
source had redshift z = 0. Hubble called this kind of magnitude correction the K
correction. Although different authors define the K correction in slightly differ-
ent ways, Hogg ef al. (2002) give a good general introduction.

Wavelength shifts will affect the colors of galaxies with large z. Application of
Equation (10.7) for two different bands gives an expression for the color change
as a function of z. Having observed a color, you can solve that expression for z, so
long as you can approximate the spectrum of a galaxy. These photometric
redshifts from observed colors are valuable estimators of galaxy distance because
they do not require observationally difficult spectroscopy of very faint objects.

10.5.2 Absorption outside the atmosphere

Space is not empty. Interstellar gas and dust in our own galaxy absorb and
scatter light. Absorption (in which the photon ceases to exist) and scattering
(in which the photon changes direction) are physically distinct processes, but
they have the same effect on the regiment of photons headed towards our tele-
scope — they remove photons from the beam. It is common to refer to both

10.5 From source to telescope

processes simply as “absorption.” Absorption not only reduces the overall
number of photons that arrive at the telescope — an effect sometimes called
extinction — but it also alters the shape of the spectrum.

Diffuse gas absorbs photons to produce interstellar absorption lines and
bands. In the optical, the sodium D doublet is usually the strongest interstellar
line, and in the ultraviolet, the Lyman-alpha line at 121.6 nm is usually stron-
gest. Especially at short wavelengths, gas will also produce continuous absorp-
tion and absorption edges due to ionization. A strong feature at 91.2 nm due to
ionization of hydrogen is very prominent, for example. Absorption by dust will
generally alter the overall shape of the spectrum, and depending on its compo-
sition, add a few very broad features. In the region 0.22—5.0 pm, dust scatters
short-wavelength photons more strongly than long-wavelength photons, so the
resulting change in the shape of the spectrum is termed interstellar reddening.
In our notation, assume that

Sism(4) = the fraction of photons of wavelength A that are transmitted by the

interstellar medium within our own galaxy.

Sexg(4) = the fraction of photons arriving at observed wavelength A that are
transmitted by the interstellar medium outside our own galaxy

Note that because of the cosmological redshift, absorptions described by Sexg(4)
involve photons that had wavelength 1/(1 + z’) when they were absorbed by
material with redshift parameter 7. (This produces the phenomenon of the
Lyman-alpha forest in the spectra of distant objects: multiple absorption lines
due to Ly o at multiple redshifts.) The photon flux that reaches the top of the
Earth’s atmosphere, then, is just
1 A
B(2) = Sism (1) Sexg(A)po(A) = Sism (A)SCXg('l)lTZd’E((I +z)4) :fl%
We will call ¢(4) the photon flux outside the atmosphere and ¢o(4) the
photon flux outside the atmosphere corrected for interstellar absorption. In

extragalactic astronomy, it is frequently difficult to estimate Sexg(4), so it may
be important to distinguish between ¢,(4) and the flux

¢G (/1) = Scxg(l)qbo(’l) ?

where ¢(A) is the flux corrected for Galactic absorption but not for extra-
galactic absorption.

10.5.3 Absorption by the atmosphere

The Earth’s atmosphere removes photons from the stream directed at our tele-
scope, both through scattering and through true absorption. As before, we refer
to both processes as “absorption”, and note that atmospheric absorption will
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both reduce the apparent brightness of the source spectrum as well as alter its
shape. We therefore refer to atmospheric extinction and atmospheric reddening.
The atmosphere also introduces some sharper features in the spectrum, the
telluric lines and bands.

Extinction is a strong function of wavelength. At sea level, three opaque
regions define two transmitting windows. Rayleigh scattering and absorption
by atoms and molecules cause a complete loss of transparency at all
wavelengths shorter than about 300 nm. This sets the short end of the optical—
infrared window. The second opaque region, from absorption in molecular
bands (primarily due to H,O and CO,), begins at around 0.94 um, has a few
breaks in the near infrared and mid infrared, then extends from 30 mm to the
start of the microwave—radio window at around 0.6 cm. The radio window ends
at around 20 m because of ionospheric absorption and reflstion.

Atmospheric extinction has a profound influence on life. The atmospheric
infrared opacity prevents the Earth’s surface from radiating directly into space
and cooling efficiently. This so-called greenhouse effect is responsible for
maintaining the average surface temperature at about 30K higher than it
would be without the atmosphere. Short-wavelength electromagnetic radiation
is quite detrimental to biological systems, and none of the forms of life pres-
ently on Earth could survive if exposed to the solar gamma-ray, X-ray, and
shortwave-ultraviolet radiation that is presently blocked by the atmosphere.
Had life here originated and evolved to cope with an environment of either
low temperatures or hard radiation, we would all be very different creatures
indeed.

The wavelength dependence of extinction has an equally profound effect on
astronomical life. Astronomy began by peering out at the Universe through the
narrow visual window and evolved over many centuries to do a better and better
job in that restricted region of the spectrum. Astronomy only discovered the
radio window in the middle of the twentieth century. Yet later in that century,
spacecraft (and aircraft) finally provided access to the entire spectrum. Only
with the introduction of decent infrared arrays in the 1980s could astronomers
take advantage of the gaps in the near-infrared atmospheric absorption available
at dry high-altitude sites. Atmospheric absorption has made optical astronomy
old, radio astronomy middle-aged, and gamma-ray, X-ray, and infrared astron-
omy young.

Quantitatively, we can postulate an atmospheric transmission function

Sam (4, ¢, €,a)= the fraction of photons of wavelength A that are transmitted by
the Earth’s atmosphere at time ¢, elevation angle e, and azimuth a

The photon flux that actually reaches the telescope is then

BN = Sam(21,,) Siom(d) Seg(A) 14— bu((1 + 2)0) = ff o

10.5 From source to telescope

The rate at which energy ultimately gets detected in an infinitesimal band
will be

dEg, = aTp(A)f{'dA = aTp(A) 4”‘1(’1) di

Here a is the effective collecting area of the telescope, and T3(4) is a function
that quantifies the overall wavelength-dependent efficiency of the instrument. It
includes such things as wavelength-sensitive reflectivity and transmission of
optical elements, filter transmission, and detector quantum efficiency. Integrat-
ing the previous equation, we can express the raw instrumental magnitude
measured inside the atmosphere:

A
mhy = —2.5log / T]’,Sm(,l)%zd,{ + Gy

=mY + Aum + Aism + Aug + Cp

mp + Aatm

I

Here the A parameters represent the atmospheric, Galactic, and extragalactic
absorption, in magnitudes; C3 is the correction for wavelength shift; and Cp is
the constant that sets the zero point of the instrumental magnitude scale. The
quantity mp, the instrumental magnitude outside the atmosphere, depends on
the telescope and photometer but is independent of the atmosphere. The quantity
mY is the instrumental magnitude in the emitted frame corrected for all absorp-
tion effects.
We can write mp as

my, = ~2.510g/Tp(/1)%)b)dl + Cp

Here, Tp(4) and Cp characterize the instrumental system located outside the
atmosphere.

10.5.4 Photometric data: reduction strategy

The idea now is to remove all the effects outlined above and reconstruct the
original stream of photons. Assume we have array data from a ground-based
observatory. The data reduction steps will be:

1. Preprocess images to remove instrumental effects: non-linearities, sideband effects,
dark, bias, and flat field. Correct for charge-transfer efficiency (CTE), fringing, and
geometric effects like scale variation as needed. If appropriate, process (combine,
shift and add, drizzle) to improve the SNR, and to remove flaws like bad pixels,

mosaic gaps, and cosmic rays.
2. Perform digital aperture or area photometry on the processed images. This will
measure the instrumental magnitude inside the atmosphere, mJ.
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Fig. 10.12 Absorption
geometries. (a) A plane-
parallel slab. We assume
the top of the atmosphere
is at h=0. Note that ds =
sec(z)dh,where z is the
local zenith angle Figure
(b) illustrates the fact that
lower layers are more
important in a spherical
atmosphere. Figure (c})
shows that the angle z
increases with depth in a
spherical shell.
Refraction effects have
been ignored.
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(c) 2(h) = z, +e
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3. Remove the effects of atmospheric absorption: compute the instrumental magnitudes
outside the atmosphere, mp.
4. Transform instrumental magnitudes and indices to a standard system, m,S,TD, if needed.
5. Derive astrophysical and astronomical corrections and parameters, as needed:
(a) corrections for absorption: Ajgm, Acxgs
(b) the correction for wavelength shift, C%;
(c) astrophysical conditions of the source: temperature, metallicity, stellar popula-

tion age, distance, diameter, etc.

We described the first two steps in Chapter 9. Step 5 is beyond the scope of an
introductory text, so we will concern ourselves now with steps 3 and 4.

10.6 The atmosphere

After the basic preprocessing and aperture photometry, the ground-based photo-
metrist may wish to remove, or at least minimize, the effects of absorption by the
terrestrial atmosphere. Under some circumstances, this is an impossible task. In
other cases, astronomers can be confident that their inside-the-atmosphere meas-
urements will yield excellent estimates of the outside-the-atmosphere values.

10.6.1 Absorption by a plane-parallel slab

Figure 10.12a shows a stream of photons traversing a horizontal slab of absorbing
material (air, for example). The photons travel at angle z with respect to the vertical.
We assume that the density and absorbing properties of the material change with 4,
the depth in the material, but are independent of the other coordinates. We assume

10.6 The atmosphere

that if a flux of ¢'(4, k) travels over a path of length ds, the material will absorb a
certain fraction of the photons. We write this absorbed fraction as

/

%A,’:)) = —a(d,h)ds = —sec(z)a(4, h)dh (10.8)
where we introduce the function (A, %) to describe the absorption per unit
distance. We can apply this result to the Earth’s atmosphere by identifying z
as the zenith angle of the source. However, the geometric and optical properties
of the real, spherical atmosphere mean that the value of the ratio d¢/¢’ is more
complicated than the extreme right-hand side of Equation (10.8) suggests. There
are two effects involved. First, as you can see from Figures 10.12b and c,
because the atmosphere has spherical rather than plane symmetry, the angle z
is not a constant, but is an increasing function of 4. Second, the actual angle at
any height will be even greater than that given by the spherical model because of
atmospheric refraction. Taking both effects into account and assuming we have
an observatory at depth H in the atmosphere, the solution to Equation (10.7) is

Pad) = p(age I _ g5y cthix (10.9)

Here ¢4 (4) and ¢(4) are the monochromatic photon fluxes inside and out-
side the atmosphere, respectively. We introduce two new functions on the right-
hand side of Equation (10.9). First, the optical depth at the zenith:

H
(A, H) = /0 o(h)dh

Physically, this definition implies that the monochromatic brightness at the
zenith changes by the factor Sym = exp{—1) due to absorption. Second, we

introduce the concept of the air mass:

i
X(4,z) = m/o sec(z(h))a(h)dh =~ X (z) = sec(z)

The air mass along a particular line of sight is a dimensionless quantity. It tells
how much more absorbing material lies along that line than lies towards the
zenith. The approximation X = sec(z(H )) is good for small zenith angles. (The
error is less than 1% for z < 70°, corresponding to an air mass of less than 3.)
For larger zenith distances, the formula

X(Z) = sec(Z)[1 — 0.0012(sec’ 2 — 1)]

is a much better approximation. Here 2 is the “true” zenith angle — the angle,
z(h = 0), between the observer’s vertical and the optical path outside the atmos-
phere — which can be computed from the object coordinates and the sidereal
time. :
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Fig. 10.13 Bouguer's law.

(a) A linear fit to
extinction star
observations gives a
measure of the extinction
coefficient (slope) and
the outside-the-
atmosphere instrumental
magnitude (intercept).
(b} Muitiple observations
of an extinction star
during a time in which
the extinction coefficient
is increasing.
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10.6.2 Bouguer's law

From Equation (10.9), we can represent the monochromat!: magnitude on the
instrumental scale as

m} = —2.5 log[h—fd),\(i)] = —25log [%qﬁ(l)] + 2.57(A)X (z) log(e)

mi = m; + 1.0867(A)X

We have omitted the constant for magnitude zero-point definition; m{ is the
magnitude as observed inside the atmosphere, and m 1 is the magnitude in the
same system outside the atmosphere. Finally, we define the monochromatic

extinction coefficient, k(1) = 1.0861(4), and rewrite the previous equa-
tion as

mi(X) = m; + k()X (10.10)
This expression, which states that the apparent magnitude is a linear function of
air mass, is known as Bouguer’s® law (or sometimes, Lambert’s law). Bou-
guer’s law suggests the method for determining the value of the extinction
coefficient, and thus a method for converting apparent magnitudes inside the
atmosphere to magnitudes outside the atmosphere. The astronomer simply
measures the brightness of some steady source (the extinction source) at at
least two different air masses — then, in a plot of magnitude as a function of
air mass, Equation (10.10) tells us that the slope of the straight-line fit is k(4)
and the y-intercept is m; see Figure 10.13. Once she knows k(2), the astronomer
can compute outside-the-atmosphere magnitudes for any other stars by making a

3 Pierre Bouguer (1698—-1758), a French Academician, was celebrated in his day for leading an
expedition to Peru in 1735 to measure the length of a degree of latitude. The expedition con-
clusively demonstrated Newton’s hypothesis that the Earth was oblate. Bouguer derived his law
for atmospheric absorption by investigation of the general problem of light transmission through 2
medium. He also holds the distinction of being the first quantitative photometrist in astronomy —in
1725 he measured the relative brightnesses of the Sun and Moon by comparison to a candle flame.

10.6 The atmosphere

single observation and applying Bouguer’s law. With one powerful and elegant
stroke, the astronomer has removed the absorbing effects of the atmosphere.

The power and elegance of Bouguer’s law depends on the persistence of two
conditions during the time over which observations are made:

(1) that k(4) is stationary — does not change over time,
(2) that k(2) is isotropic — does not change with location in the sky.

If both these conditions hold, observers will say that the atmosphere is photo-
metric and feel powerful and capable of elegance. If the conditions are violated
(visible clouds are one good indication), observers will recognize that certain
kinds of photometry are simply impossible. There are intermediate situations —
Figure 10.13b shows observations in which condition (1) is violated —extinction
here changes gradually over several hours. As long as the changes are carefully
monitored, the astronomer can still hope to recover the outside-the-atmosphere
data via Bouguer’s law.

Condition (2) is always violated because of the spherical nature of the atmos-
phere: absorption by lower layers becomes relatively more important at large
zenith angles (Figure 10.12b), and total extinction as well the extinction versus
wavelength function will change. This effect is not significant at smaller (< 3)
air masses, so usually can be (and is) ignored. In general, it is a good idea to
avoid any observations at very large air masses — the likelihood of encountering
non-uniformities is greatly increased, as are all other atmospheric effects like
seeing distortions, differential refraction, and background brightness levels.

10.6.3 Sources of extinction

Figure 10.14 plots k(1) for a typical clear (cloud-free) sky in the 0.3—1.4 pm
region. As illustrated, the value is the sum of contributions from four different
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Fig. 10.14 A model for
the contributions to the
extinction coefficient.
Aerosol and water-vapor
absorption are highly
variable. This is a low-
resolution plot, so band
structure is smoothed.
Letters mark strong
telluric Fraunhoffer
features and the
photometric J-band
window.
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processes, each of which has a characteristic spectral dependence. The processes
are:

Rayleigh scattering by molecules. In this process, a photon encounters a mole-
cule of air and is redirected. The probability of scattering is much greater for
short-wavelength photons (for pure Rayleigh scattering, extinction is propor-
tional to A~*). Molecular scattering explains why the sky is blue, since multiply
scattered photons from the Sun will tend to be those of shortest wavelength,
Molecular scattering is a component of the extinction that is stable over time,
and its magnitude scales directly with the atmospheric pressure — higher altitudes
will have more transparent skies.

Absorption by ozone. Continuous absorption by the O3 molecule in the ultra-
violet essentially cuts off transmission shortward of 320 rm. Ozone also absorbs
less strongly in the Chappuis bands in the visible near 600 nm. Atmospheric
ozone is concentrated near the stratopause at around 48 km above sea level, so
the benefit of high-altitude observatories is limited with respect to ozone extine-
tion. Ozone abundance is subject to seasonal and global variations, but does not
appear to vary on short time scales.

Scattering by aerosols. Acrosols are suspensions of small solid or liquid particles
(particulates) in air. Particulates range in diameter from perhaps 50 pm down to
molecular size. Aerosol particulates differ from water cloud drops by their much
longer natural residence time in the atmosphere. In fact, the way most aerosols
are removed is by reaction with water droplets in clouds* and subsequent pre-
cipitation. Several different processes inject particulates into the atmosphere.
Sea spray and bursting bubbles introduce salt. Winds over deserts introduce dust.
Volcanoes inject ash and sulfur dioxide (a gas that interacts with water vapor to
form drops of sulfuric acid). Burning fossil fuel and biomass introduce ash, soot,
smoke, and more sulfur dioxide. The wavelength dependence of aerosol scatter-
ing depends largely on the size of the particle, and the typical wide range of sizes
present (salt particles tend to be large; smoke particles, small) usually produces a
relatively “gray” extinction (a A~' dependence is typical). A pale-blue (rather
than deep-blue) sky indicates high aerosol extinction. Sometimes aerosols can
produce striking color effects, including the lurid twilight colors from strato-
spheric volcanic ash and the “green sky” phenomenon due to Gobi Desert dust.
Aerosol scattering can be quite variable, even on a short time scale, and different
components reside at different atmospheric levels. Although salt, dust, and
industrial pollution mainly stay in the lower layers (a scale height of 1.5 kilo-
meters is representative), some volcanic eruptions and intense forest fires can

* Aerosol particles are crucial to the formation of water clouds — water vapor condenses into
droplets much more readily if aerosols provide the “seed” surfaces on which condensation can

proceed. Without such seeds, very clean air can supersaturate and reach a relative humidity well
over 100%.
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inject aerosols into the stratosphere, where they may persist for weeks or even
years, since there 1s no rain in the stratosphere.

Molecular-band absorption. The main molecular absorbers are water vapor
and carbon dioxide, although oxygen has a few relatively narrow features,
and we have already discussed the ozone bands. Water vapor and CO, bands
demarcate the relatively transparent windows in the near and middle infrared.
Carbon dioxide is well mixed with altitude in the atmosphere, but water vapor
is concentrated near the surface and varies with temperature, time, and loca-
tion. At sea level, the amount of vapor in one air mass corresponds to about
10 mm of liquid, on average. On Mauna Kea, one of the best conventional sites,
the average is about 1 mm of precipitable water. At the south pole, which
benefits from both high elevation and low temperature, values approach
0.15 mm. Stratospheric observatories carried by balloons or aircraft enjoy even

lower values.

10.6.4 Measuring monochromatic extinction

Ground-based astronomers use a variety of methods for removing the effects of
atmospheric extinction. We look at a few cases here, and then examine the
complications introduced by heterochromatic (broadband) systems. To keep
things simple at the start, we assume that we are observing a monochromatic
magnitude and that our instrument is sensitive to exactly the same wavelength as
some standard system.

Case 1: assume a mean extinction

At remote high-altitude sites, the extinction at shorter wavelengths is usually
due almost entirely to Rayleigh scattering, and is therefore stable. Under these
conditions, it may be safe simply to use the average (or better still, the median)
extinction coefficient determined by other observers for the same site over the
past years. This is a particularly reasonable approach if one is doing differential
photometry, or if standard and program stars are observed at nearly the same air
mass at nearly the same time.

Case 2: use known outside-the-atmosphere magnitudes

If you wish to determine the extinction yourself from the Bouguer law, this is
extremely simple method applies — if you happen to know m;,, the magnitude
outside the atmosphere of some constant star. In this case, just point your tele-
scope at the star, note the air mass, X, and take an image. You measure m?(X),
you know m;, so just solve Equation (10.10) for k(). The method becomes
more robust if you know values of m,; for more than one star.
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Case 3: draw the Bouguer line from observations
If you don’t know m,, then you need to do a little more work and generate the
Bouguer line. You take two or more exposures of the same field of stars over 3
wide range of air masses. This, of course, requires waiting for the zenith djs-
tance of your field to change. Many observers record the extinction field every
90 minutes or so. You plot the resulting instrumental magnitudes as a function
of air mass, and if the night is photometric, you obtain a plot like Figure 10.13,.
Choose your extinction field carefully. With a good choice and a wide-field
CCD, you may well have several stars (let’s say 30) that yield good SNRs on 3
short exposure. Your data then will have greater statistical significance than a
plot for just a single star in determining k(1). To do the computation of the
Bouguer line, you might combine all 30 fluxes at eachair mass and fit one
straight line. You will often find it economical to make the extinction field
identical to the program field or to a field containing standard stars.

Case 4: variable extinction and multi-night data

What if the extinction changes? If you observe over many consecutive nights,
change is likely. If you are fortunate, the extinction will change slowly over time
and uniformly over the entire sky. In this case, some modification of the pre-
vious method will yield k(4, £). For example, if you are sure of the outside-the-
atmosphere magnitudes of some of your constant stars, then simply monitoring
the constant stars will give instantaneous values of k(4, ).

If you do not have the instrumental outside-the-atmosphere magnitudes,
there is still hope: if you have the standard magnitudes of two constant stars,
observing them at different air masses measures k(4, t). The usual practice is to
take one frame containing a standard star near the meridian (the “D” frame),
and then immediately take a frame containing the second standard at large air
mass in the east (the “M” frame). Provided that the extinction coefficient is the
same in all directions, Bouguer’s law gives the difference in the instrumental
magnitudes of M and D, measured inside the atmosphere, as

Ay, = mjga(Xar) — mip; (Xo) = myg — mpy + k(2,0) (X — Xp)
Ay = Amyp + k(4, ) AXup

For monochromatic magnitudes, the magnitude difference in the instrumen-

tal system should be equal to the difference in the standard system, i.e.

AmSTY = myr; — mp,, so that we can write

A STD
_ Amyyp, — Amyy

k(4,1) AXon

All the quantities on the right-hand side are either known or measured. Because
of the possibility of extinction change, many photometrists adopt the strategy of
observing “MD” pairs every few hours through the night.

10.6 The atmosphere

Case 5: use all the data

The most general methods make use of all available information, and include
data for all nights in which sources are observed in common. Every frame taken
during the run of several nights is affected by extinction and therefore contains
information about extinction. One approach might work as follows: derive
values for k(1) from the best nights — those for which it is possible to make
good linear fits to the extinction data — and compute the outside-the-atmosphere
magnitudes for every constant star (not just those used for the fits). You then
should have a large set of extra-atmospheric magnitudes that you can use to find
the extinction as a function of time for the more marginal nights. Cloudy nights
in which the extinction changes rapidly will be suitable only for differential
work. The extinction problem is well suited to a least-squares solution with
constraints imposed by standard stars. See the discussion in chapter 10 of
Sterken and Manfroid (1992) for a good introduction.

10.6.5 Heterochromatic extinction

The previous discussion strictly applies only for monochromatic magnitudes.
For bandpass magnitudes, we must rewrite Equation (10.10) as

" Tof1Satmdd
kpX = mhy —mp = =2.5 ]og{'j—m—m}

T Tefadl

or

(10.11)

kX = _2‘510g{f Te/ Cxp[ﬁk[i}){]dj}

[ Tefd2

where kp is the extinction coefficient for band P. In general, the function on the
right-hand side of Equation (10.11) is rot linear in X, and will depend strongly
on the shape of the function f;. We should expect, therefore, that it must be the
case that kp = kp(X,SpT), where the variable SpT indicates the spectral shape
of the object observed. For most narrow-band and some intermediate photo-
metry, the variation of kp with X and SpT'is so small that it can safely be ignored.
For wider bands, however, this is not the case.

Think of the variation in kp as due to two different but related effects. First, as
we had seen earlier, the effective and isophotal wavelengths of a bandpass
depend on the spectrum of the source. This effect is present even in outside-
the-atmosphere photometry. We should expect that the extinction measured,
say, for a red star will differ from the extinction measured for a blue star, since
the center of the bandpass is different for the two. Because of this effect, the
Bouguer plot of apparent magnitude versus air mass will give straight lines of
different slopes for stars of different spectral shapes. The second, more
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Fig. 10.15 The Forbes
effect. (a) A model source
spectrum, bandpass
transmission Tgp), and
extinction coefficient.
The extinction is due
entirely to a strong
feature near the blue
edge of the band. (b) The
flux actually detected at
the telescope is shown as
a function of wavelength
for four different air
masses. Note the
relatively small change
between X=1and X=2
(shaded regions)
compared to the change
between X=1 and X=0.
{c) The Bouguer diagram
for the data in (b),
illustrating the non-linear
relationship and the
difference between the
actual extra-atmospheric
magnitude (filled circle)
and the intercept of a
linear fit to observable
data (open circle).
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invidious problem arises because atmospheric extinction itself changes the
shape of the spectrum that reaches the telescope. This effect —called the Forbes
effect —means you actually observe different spectra for the same star at differ-
ent air masses. (Alternatively, you can think of the effect as changing the shape
of the bandpass response as air mass changes.) A Bouguer plot of apparent
magnitude versus air mass will therefore give a curved line. The Forbes effect,
as illustrated in Figure 10.15, is particularly problematic if strong atmospheric
absorption affects some parts of the photometric band more than others. This is
the case for Johnson U and many of the wider infrared bands (review Figures
10.1 and 10.3). In such cases, the magnitude change in going from X=2to X=1
can be considerably less than in going from X = 1 to X = 0. In some cases, both
the width of the band and its effective wavelength can change dramatically at
the smaller air masses. Use of outside-the-atmosphere magnitudes when the
Forbes effect is present is a little tricky, and sometimes depends on having a
good model of the response function, the atmosphere, and the unknown source.
For precise work, therefore, it is best to use bands that exclude strong atmos-
pheric absorptions (e.g. the MKO near-infrared system).

10.6.6 Second-order extinction coefficients

A solution for Equation (10.11) would be possible if we could make a good
approximation of both the monochromatic extinction function k(1) and the
shape of the spectrum f;, either numerically, or perhaps with a Taylor series
expansion of each function. The required functions or their derivatives are rarely
known, so what is usually done is to assume that the photometric color, which

10.6 The atmosphere

gives some sense of the shape of the source spectrum, will account for most
variations in the broadband extinction, and write

kp = Ky + KL - (ci) (10.12)

where (ci) represents some “appropriate” photometric index like (B— ), and &7,
is called the second-order extinction coefficient. For example, the coefficient
for the Johnson V band might be written as

# kV:k(/"'k{;.Bv'(B_V)

The color in this case is (B — V), but might also have been chosen to be (V—R)
or (V' —1). It is also quite common to use the instrumental colors instead of the
standard colors, since instrumental colors will be available for many more
extinction stars. Instrumental magnitudes are usually written in lower case for
the Johnson—Cousins system, so the instrumental color in the above equation,
for example, would be (b — v). For broadband extinction, therefore, one has for
the ith observation of star j

mp ;= my; + (kp + Ky < (ei)) X, (10.13)

Various approaches can then lead from the data (the (X; ;, mﬁ’i’ ;) pairs) to values
for the outside-the-atmosphere instrumental magnitudes, mp;, and for the two
extinction coefficients, k; and k. The second-order coefficient is difficult to
determine from a few nights’ observations. Fortunately, this coefficient should
not vary much if the primary sources of extinction do not include absorption
bands due to water vapor. It is common practice, therefore, to use mean values —
established over time for a particular instrument and site — for the second-order
coefficients.

All the cases discussed in the previous section on monochromatic data can be
applied to correcting heterochromatic data for extinction, with the understand-
ing that a second-order extinction coefficient may need to be determined. Also,
understand that if you use an outside-the-atmosphere color index in Equation
(10.13), you have not accounted for the Forbes effect at all. If the Forbes effect
is severe, the form of Equation (10.13) is probably inadequate. You may then
need to fit the extinction data with a function of X whose form has been derived
from a model (similar to Figure 10.15) of how the flux in the bandpass changes
with air mass. This requires detailed knowledge of both the bandpass shape and
absorption behavior, as well as the spectrum of the source.

10.6.7 Indices or magnitudes?

The traditional method for reporting n-color photometric data is to give one
magnitude and » — 1 indices. It has also been traditional to make the extinction
computations not for n magnitudes, but for one magnitude and » — 1 indices.
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Suppose, for example, we observe in the Johnson B and V bands. If we have 5
B frame and a V frame taken at about the same air mass, we can write Equatiop
(10.13) once for each band, and then subtract the equations, yielding
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| b= ==+ {(k—K), + (Ko —Ha) B-1}x

| Combining the coefficients, we have

G-W=0b-v)+{k_y+k - B-V}X (10.14)

Here the new first- and second-order coefficients describe the effects of extinction
on the index. There is an objective reason for analyzing extinction data via Equa-
tion (10.14) rather than via Equation (10.13): if either instrument sensitivity or
atmospheric aerosol extinction drifts during an observing run, the effect on the
observed color indices will be minor compared to the effect on the individual
magnitudes.

This reasoning is less compelling in modem observing. For one thing, CCDs
and infrared arrays are much less prone to sensitivity drift than photomultipliers.
Moreover, the requirement that all instrumental bands be observed at the same
air mass is somewhat restrictive, and may prevent the use of all the available
extinction data.

10.7 Transformation to a standard system

Assume we have observed an outside-the-atmosphere instrumental magnitude
for some source, either by correcting a ground-based observation for extinction
or by direct observation with a space telescope. If we wish to compare our result
with those of other observers, we must all use the same photometric system.
Almost always, this means executing the next step in the photometric reduction

. procedure, the transformation from the instrumental to the standard system. This
transformation will depend on (1) differences between the response of our
instrumental system and that of the standard system and (2) the shape of the
spectrum of the source.

10.7.1 The monochromatic case

Suppose we observe with indefinitely narrow-band filters whose central wave-
lengths, 4, and 4,, may be slightly different from the standard wavelengths, A
and Agy. The difference between the first standard magnitude and our instru-
mental result is

my’® —my = —2.5[logfi, —logfi,] + CS™° — ¢y (10.15)

10.7 Transformation to a standard system

The last two terms in Equation (10.15) quantify the difference between the
efficiency of our telescope/photometer and the standard instrument. These will
be the same for every source observed. The first term on the right, in brackets,
you will recognize as something like a color index. This prompts us to rewrite
(10.15) as:

STD
M

~my, + az(my —my) + o = my, + aplc); + o (10.16)
In this equation, a5 is called the color coefficient for the transformation and oy
is called the zero-point constant. Since indices are more closely related to
physical variables than are individual magnitudes, in an n-band system, astron-
omers traditionally work with one magnitude transformation and » — 1 index
transforms, of the form

(my — m2)> P my, — my, + (o2 — a2)(my, —my) + o —

Redefining constants and simplifying the notation slightly:
(ci)yz = o)y + Bz (10.17)

We can justify Equations (10.16) and (10.17) if the first term of Equation (10.15)
is a linear function of some color index of the instrumental system (or of the
standard system). From Figure 10.16, you can see that Equation (10.16) is valid
only if (ci),, measures the slope of the logarithmic spectrum between Ay and
the standard wavelength, As. Unfortunately, at the resolution of narrow-band
photometry, many spectra have almost discontinuous features like lines. Many
narrow-band systems may have indices that give a good value for the local
derivative at each of the standard wavelengths. Thus, the relation in Equation
(10.16) is rarely exact.

In practice, astronomers almost always assume a transformation equation
like (10.16) or (10.17) but will use empirical methods to establish the color
coefficient and zero point, or even the functional form for the transformation
itself. The function might include a higher-order color term, or use some other
photometric criterion to improve the accuracy of the transformation.

The general approach is simple: you measure m;, and (ci),, for a range of
standards whose spectra you expect to resemble those of the unknown sources
under investigation. Your plot of (m§'® — my,) as a function of (ci),,, as in
Figure 10.17, then establishes a relation like Equation (10.16). In the example in
the figure, the data invite a quadratic fit, so you would add a term with a second-
order color coefficient to the transformation equation. Another reasonable
empirical fit might use two different linear relations, one for lower and another
for higher values of the color index. If a grid of standards establishes the trans-
formation, then the transformation can introduce errors if the spectrum of an
unknown source is sufficiently different from any element of the grid.
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Fig. 10.16 Color
transformation. Narrow-
band measurements at
wavelengths 1 and 2 can
predict the
monochromatic
magnitude at the
standard wavelength
(filled circle at
wavelength S) if the color
index measures the slope
between wavelengths S
and 1. If the (¢i) does not
measure the slope —as in
wavelengths 1 and 3, an
error results.

Fig. 10.17 Empirical
determination of the
transform coefficients
from a plot of standard
minus instrumental
magnitudes as a function
of color index. This data
could be fitted with a
quadratic function (A) or
with two different linear
functions: (B) forci < w
and (C) forci > w.
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10.7.2 The heterochromatic case

The problem of transformation to a broadband standard system is similar to the
monochromatic case: we just replace the fluxes in Equation (10.15) with the
appropriate integrals:

mﬁTD —mp = — 2.5 [log/ Tp,STDﬁdﬂ =] log/ Tpfid/{] + CgTD bt Cp

Except for the zero-point terms, the transformation to the standard system will
reflect differences between the instrument response of your system, Tp, and the
instrument response of the standard system, Tpstp. In the broadband case,
differences can be due to any differences in the detailed shape of the response
function, especially those resulting in different central wavelengths and band-
widths. Because a broadband system examines a smoothed version of the spec-
trum, and because the bands tend to be close together relative to the scale of the

Summary

smoothing, the approximation of Equation (10.16) will tend to be better in
broadband than in most narrow-band systems.

Procedures are similar to those discussed for the monochromatic case: you
plot, as a function of color, the difference between instrumental and standard
magnitudes for a set of standards that spans the range of spectra you expect in the
unknowns. If the functions Tp and Tp srp are identical, you will find a horizontal
line at the level of the zero-point correction. If the functions differ (the usual
case!), you fit the data to find the color term or terms in the transformation. The fit
may be a straight line, or may require higher-order terms, and will apply safely
only to those kinds of spectra sampled by the standard stars you have observed.

Summary

o The history of photometry has imposed the magnitude scale and the definition of

several important broadband photometric systems.

e Photometric bandpass response functions are generally categorized as broad-,
intermediate-, or narrow-band. A response can be implemented by filters, detector

sensitivity, atmospheric transmission, or some combination of these. Concepls:

resolving power response function photon response function
high-pass filter peak wavelength central wavelength

mean wavelength effective wavelength isophotal wavelength
FWHM bandwidth photon flux

zero point bandpass magnitude

o Photometric indices, which are linear combinations of bandpass magnitudes, quan-
tify characteristics of an object’s spectrum. Concepts:
color index blackbody specirum monochromatic magnitude

line index curvature index feature index

s A standard photometric system specifies both the response functions of its bands as

well as some method for standardizing measurements. Concepts:

open system closed system instrumental system
visual magnitude standard sequence north polar sequence
ci international system photovisual magnitude
UBVRI Cousins system JHKLMNQ

MKO filters Strémgren system uvhyf

¢y and m SDSS system

e A shift in an object’s spectrum caused by the Doppler cffect or cosmological
expansion will produce a photometric change that can be corrected il an astron-
omer has sufficient information (the K correction).

(continued)
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Summary (cont.)

s Conversely, the color change observed in a very distant object can lead to an

estimate of its redshift.

Absorption by material outside the atmosphere can produce both reddening and
absorption lines and bands in a spectrum.

Absorption by material inside the atmosphere can produce both reddening and
telluric absorption lines and bands. Concepts:

optical-infrared window
instrumental magnitude

microwave—radio window
magnitude outside the atmosphere
Photometric data reduction proceeds in steps: (1) preprocessing, (2) digital photo-

metry, (3) atmospheric extinction correction, (4) transformation to a standard
system, and (5) further corrections and analysis.

Bouguer’s law is the basis for the correction for atmospheric extinction:
mi(X) = m; + k(A)X

Concepts:
optical depth aiy mass
ozone bands molecular bands

extinction coefficient

Rayleigh scattering

aerosols Bouguer line mean extinction

second-order monochromatic heteraochromatic
extinction extinction extinction

Forbes effect

Transformation to the standard system requires observation of standard ohjects
using instruments identical to those used for the unknowns. Concepts:
zero-point constant standard star/extinction star

color coefficient second-order color coefficient

Exercises

1.

Show that for a response function with a boxcar or triangular profile, the bandwidth =
FWHM, but that for a Gaussian, the bandwidth << FWHM.

. The table below gives the response function for a photometric bandpass, as well as

the flux distributions for two sources. Characterize this system by computing (use a
spreadsheet) all of the following:

wavelength at peak transmission

the FWHM

bandwidth

Exercises
mean wavelength
effective wavelength for each source
isophotal wavelength for each source
A (nm) RBp(/{) ﬁA AB
500 0 1.70 0.37
505 0.04 1.56 0.47
510 0.24 1.43 0.57
515 0.41 1.31 0.67
520 0.5 1.20 0.78
525 0.55 1.10 0.89
530 0.64 1.00 1.00
535 0.77 0.92 112
540 0.88 0.84 1.24
545 0.96 0.77 1.37
550 0.99 0.70 1.50
555 1 0.64 1.64
560 0.81 0.57 1.78
565 0.5 0.52 1.92
570 0 0.46 2.07

. A photometer on a spacecraft employs a grating-and-slot arrangement (see Figure

10.1) such that all radiation with wavelength between 2.0 and 4.0 pum is detected.

(a) Assume the detector is a perfect bolometer, so that 50% of the energy between
1.0 and 3.0 pm is detected, independent of wavelength. In other words, Rgp (1) is
a “boxcar” with mean wavelength 3.0 pm and bandwidth 2.0 pm. Compute the
effective wavelength of this band for a hot star with f; = ALTH

(b) Now assume the detector is replaced with an infrared photon detector with
uniform quantum efficiency such that 50% of the incident photons at each
wavelength in the band are detected. Again, compute the effective wavelength
of this band for a hot star with f; = 44™*. Note that you will need to devise an
expression for the energy response function of the system.

. Show that Equations (10.3) and (10.4) follow from the Rayleigh-Jeans and Wien

approximations to the Planck law.

. Gabriel very carefully constructs a filter for his CCD photometer so that the response

function matches the standard bandpass of the Johnson V color very precisely. He
observes two very well-established standard stars whose catalog data are given
below. Gabriel discovers that with his CCD, no matter how carefully he observes,
he always finds one star is brighter than the other: its image always contains more
total analog-to-digital units (ADUs) on the CCD. Liz suggests to him that this is
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10.

because the CCD is a photon-counting device. (a) Explain her reasoning. (b) If Liz ig
correct, which star should be the brighter on the CCD and why?

v B-v
Star 1 9.874 0.058
Star 2 9.874 0.861

. An astronomy student obtains two images of a galaxy, one in the B band, the other in

the V band. Outline the image arithmetic operations the student would execute in
order to produce a map of the (B — ¥) color index for the galaxy. Failure to subtract
the constant background sky for each image would cause prol‘z:'.':ms in the map. For
which parts of the map would these problems be most serious? On the other hand,
would subtracting the background sky introduce any problems in the map? If so,
which parts, and why?

. Investigate the website for the Sloan Digital Sky Survey. In what ways is the SDSS

five-color system superior to the UBVRI system?

. An MOS capacitor observes two sources in the band 400-600 nm. Source A has a

spectrum such that the distribution of photons in the 400-600 nm band is given by
na(A) = AX. Source B has a distribution of photons given by ng(1) = BA™2 in the
same band. If the two sources generate photoelectrons at exactly the same rate,
compute their brightness ratio. You may assume the detector’s quantum efficiency
is not a function of wavelength.

. Speculate, in terms of the Forbes effect, why it might be useful to define the standard

magnitude as one measured at | air mass, rather than at zero air mass. What diffi-
culties might be inherent in this choice?

An observer uses the B and V filters to obtain four exposures of the same field at
different air masses: two B exposures at air masses 1.05 and 2.13, and two V
exposures at air masses 1.10 and 2.48. Four stars in this field are photometric
standards. Their standard magnitudes are given in the table below, as are the instru-
mental magnitudes in each frame.

(B-V v b(1) b(2) vi1) v2)

Air mass 1.05 2.13 1.10 2.48

Star A -0.07 12.01 9.8563 10.687 8.778 9.427
Star B 0.36 12.44 10.693 11.479 9.160 9.739
Star C 0.69 12.19 10.759 11.462 8.873 9.425

Star D 1.15 12.89 11.898 12.547 9.522 10.002

Exercises

(a) Compute the extinction coefficients for the instrumental system: k;, k3 , &, , and K.
Hint: at each air mass, Equation (10.10) holds. Write an equation for the differ-
ence between the magnitudes at the two air masses (e.g. an equation for b(2) —
b(1)). Examination of this equation will suggest a method for computing the
coefficients. You may find it helpful to enter the data from the table into a
spreadsheet in performing the computations.

(b) Compute the instrumental magnitudes of each star at zero air mass

(c) Compute the transformation coefficients, oy, ag_v, fg_v, and yg_y, using the
method outlined in Section 10.7.

11. A photometric bandpass whose response function is shown in curve A below

measures the strength of the emission feature shown in curve B. In the figure,
the source has zero velocity. Compute the change in the brightness measurement,
in magnitudes, that would result if the source were given a radial velocity of
300 km s~

Transmission fraction

A Emission intensity
B =100
Sk
— 50
L e S S R
655 656 657 658

Wavelength in nanometers
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