Stochastic M ethods

Stochastic M ethods (Chapter 11)
In Chapter 5 we briefly discussed various techniques for determining the 'uncertainties in calculations, including:

method for deriving uncertainty: Generate N synthetic versions of the original data set. Each
synthetic version may incorporate random tweaks to individual data values viatheir quoted uncertainties, or may
randomly (sub)sample if the uncertainties are unknown or suspect. Carry out the computation(s) for each of the
N iterations—the dispersion in the N values is the uncertainty.

Example
Find the mean of 15 numbers, and compute a confidence interval for the mean: bootstrap.f and MonteCarlo.f.

More generally, Monte Carlo techniques™ are utilized for solving physical and mathematical problems that don't
necessarily lend themselves to easy analytic solutions (multi-dimensional integrals, data sampling). They are used for
simulating systems with many degrees of freedom (e.g., in physics). Homework #11.22
requires Monte Carlo methods to solve for the pressure of a gas with a Maxwell-Boltzmann velocity distribution.

A general algorithm® looks like
Define the possible range for inputs
Generate random values of inputs
Execute the desired calculations
Repeat many timesto get a statistical sense of the average/median/variation
Summarize results (statistically)

*Named after the Monte Carlo Casino in Monaco  "see wikipedia.org/wiki/Monte_Carlo_method
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Stochastic M ethods

Next several pages. Examples of using Monte Carlo ssmulations

Basic Example
On your way to the World Darts Championship, you crash land on aremote island. In the process of building your
MacGyver-esgue signaling beacon, you need the ratio of areas for a square and acircle of the same width. However,

the collision knocked the value of T from your memory.

Algorithm: throw a dart 100 times at a picture of a square with acircle inscribed. Ratio the number that fall within
the square to the number that fall within the circle. Repeat this process 100,000 times to get a good statistical
under standing of your result!

This example: 20/16 = 1.25

(versus the expected )
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Stochastic Methods
How do you simulate a data set that follows a known distribution?

= Acceptance-Rejection!

I magine you need to simulate a cannon fight carried out on a medieval battlefield. To properly predict Team A's
fighting effectiveness with a cannon, you first need a known distribution of cannon ball trajectories. Y our faithful
squire Longbeard reports the following distribution from previous battles;

N(d) A

>

cannonball distance d

Convert to a probability distribution P(d) by normalizing N(d) to range from 0 to 1 (i.e., divide by the max N(d)).
Randomly select atria distance d__; record that distance's probability P(d )

Isthistrial distance reasonable?
Randomly select anumber n fromOto 1
If n< P(d) then accept thistrial distance
if n> P(d) then regject thistrial distance
Repeat many, many times
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The distributions of observed galaxy luminosities.

Using the known distribution of - SH
galaxies, one can simulate how often
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Zone of Avoidance

O cz = 15000 km/s

S’ cz = 9000 km/s

Project: Measuring the bulk motion of galaxy clustersin the Local Universe

Each circle represents a cluster of galaxies. For my project | measured each cluster's peculiar motion through space.
No clusters are seen in the Zone of Avoidance, due to obscuration of background objects by the foreground Milky Way.

What is the impact of the ZoA on all-sky surveys? — Quantify with ssimulations!
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An improved approach to

statistically quoting an uncertainty

Generate thousands of simulated solutions, by taking
the overall solution and adding/subtracting random

fractions of the known uncertainties.

The bulk motion is avector, and thus

has both an amplitude and a direction.
Thefilled circlesin these plots show the
overall solution, for which I could have
merely quoted an uncertainty in the
amplitude and coordinates. A much more
sophisticated approach to the
uncertainty utilitizes Monte Carlo
simulations to generate a*“ cloud of
uncertainty”. Thetwo circlesin
each panel represent 1c and 2o
confidence ellipses, i.e. ,
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Stochastic Methods
Quantifying uncertainties in fitting models to galaxy spectra.
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Quantifying uncertainties in a Principal Component Analysis.

A principal component analysis yields 'eigenspectra that indicate underlying components to spectral
data. Think of eigenvectorsin quantum mechanics and linear algebra, and expressing data in terms of
linear combinations of the eigenspectra.

Eigenspectra are computed from a diagonalization of a covariance matrix defined by the data. It would
be complicated to formally compute the uncertainties in the eigenspectra. Monte Carlo simulations make
it easy.

Redo the elgenspectra calculation
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Stochastic Methods
Let's do an example

Suppose we are interested in computing the total mass of all aliens on Planet X, but that our instruments can only
detect aliens with mass of 30 kg or larger. In our sampling of aliens with masses m=[35,45,55,65,75,85,95] kg we

find N=[66,54,46,34,26,14,5] aliens. The uncertainty on the j"" count is €= and thus

S

The observed trend from 35 to 95 kg is well fit with afirst-order polynomial,

N(m) = -m/kg + 100,
where misthe massin kg. Thus the total mass between 100 and 0 kg can be computed after extrapolating this trend
to zero mass:

What is the uncertainty on this estimate? \We can compute it by repeating the above exercise thousands of times, and
taking the standard deviation in the results as the uncertainty. (chivaliensf)

N(m) 4

>

MasS m
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Just-in-Time Question: Random Number Generators

Suppose you generate 100,000 simulated numbers using the 'rand’ function of MATLAB. What are the expected
ratios N(0.1-0.2)/N(0.75-0.9) and N(1.3-1.4)/N(0.1-0.2), where N(x-y) is the number of times 'rand' yields avalue
between x and y?

General hint for coding

Beware that Homework #7 can take awhile, especially when doing 10° trials for the acceptance-rejection problems.
We are not using supercomputersin PS 227, so carefully try to streamline your code for efficiency. e.g., make all
initial calculationssuchasP__ =3/4 outside of your loops, and then only use P__ intheloop. Thiswill avoid doing

things like calculating 3/4 again and again and again...
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