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Stochastic Methods (Chapter 11)
In Chapter 5 we briefly discussed various techniques for determining the 'uncertainties' in calculations, including:

                             method for deriving uncertainty: Generate N synthetic versions of the original data set.  Each 
synthetic version may incorporate random tweaks to individual data values via their quoted uncertainties, or may 
randomly (sub)sample if the uncertainties are unknown or suspect.  Carry out the computation(s) for each of the 
N iterations—the dispersion in the N values is the uncertainty.  

Example 
Find the mean of 15 numbers, and compute a confidence interval for the mean: bootstrap.f and MonteCarlo.f.

More generally, Monte Carlo techniques✰ are utilized for solving physical and mathematical problems that don't 
necessarily lend themselves to easy analytic solutions (multi-dimensional integrals, data sampling).  They are used for 
simulating systems with many degrees of freedom (e.g.,                                       in physics).  Homework #11.22 
requires Monte Carlo methods to solve for the pressure of a gas with a Maxwell-Boltzmann velocity distribution.

A general algorithm† looks like
Define the possible range for inputs
Generate random values of inputs
Execute the desired calculations
Repeat many times to get a statistical sense of the average/median/variation
Summarize results (statistically)

✰Named after the Monte Carlo Casino in Monaco †see wikipedia.org/wiki/Monte_Carlo_method
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Basic Example 
On your way to the World Darts Championship, you crash land on a remote island.  In the process of building your 
MacGyver-esque signaling beacon, you need the ratio of areas for a square and a circle of the same width.  However, 
the collision knocked the value of  from your memory. 

Algorithm: throw a dart 100 times at a picture of a square with a circle inscribed.  Ratio the number that fall within 
the square to the number that fall within the circle.  Repeat this process 100,000 times to get a good statistical 
understanding of your result!

This example: 20/16 = 1.25

(versus the expected                                )

Next several pages: Examples of using Monte Carlo simulations
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Measurements of
brightness and rotational
speed

A brightness-limited
survey will 
systematically
miss faint galaxies

How would systematically
missing objects “below”
18 on the y-axis affect
linear fits to these data?

One can simulate (and correct
for) such a bias.
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How do you simulate a data set that follows a known distribution?
 Acceptance-Rejection!

Imagine you need to simulate a cannon fight carried out on a medieval battlefield.  To properly predict Team A's 
fighting effectiveness with a cannon, you first need a known distribution of cannon ball trajectories.  Your faithful 
squire Longbeard reports the following distribution from previous battles:

Convert to a probability distribution P(d) by normalizing N(d) to range from 0 to 1 (i.e., divide by the max N(d)).
Randomly select a trial distance d

trial
; record that distance's probability P(d

trial
)

Is this trial distance reasonable?
Randomly select a number  from 0 to 1
if < P(d) then accept this trial distance
if > P(d) then reject this trial distance 

Repeat many, many times

N(d)

cannonball distance  d
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Deprojecting two-dimensional
distances to three-dimensional distances
Generate a random line-of-sight distance D

l.o.s.
 

Compute trial 3D distance: r
3d

2 = r
2d

2 + D
l.o.s.

2

Compute expected density ratio at this location: 
(r

3d
) = n(r

3d
)/n(0)=(1+r

3d
2/r

core
2)-3/2 

Generate random number  between 0 and 1
If  is less than , then accept this r

3d
; otherwise reject

Repeat several thousand times until r
3d

 is statistically built up
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The distributions of observed galaxy luminosities.
Using the known distribution of
galaxies, one can simulate how often
faint galaxies should appear in a
survey.  At the right are known
luminosity distributions, normalized to
have a maximum value of 1.  In
generating simulated galaxies, one 
needs to rely on these distributions.

Select a trial galaxy (luminosity)
Use the plots on the right to 

determine the likelihood  of
its luminosity

Select a random number  between 
0 and 1

If  is less than , then accept the
trial; otherwise reject

Repeat thousands of times to build up
a library of simulated galaxies

brighter
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Project: Measuring the bulk motion of galaxy clusters in the Local Universe

Each circle represents a cluster of galaxies.  For my project I measured each cluster's peculiar motion through space.
No clusters are seen in the Zone of Avoidance, due to obscuration of background objects by the foreground Milky Way.
What is the impact of the ZoA on all-sky surveys?   Quantify with simulations!

Zone of Avoidance
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An improved approach to
statistically quoting an uncertainty
Generate thousands of simulated solutions, by taking
the overall solution and adding/subtracting random
fractions of the known uncertainties.

The bulk motion is a vector, and thus 
has both an amplitude and a direction.
The filled circles in these plots show the
overall solution, for which I could have
merely quoted an uncertainty in the
amplitude and coordinates.  A much more
sophisticated approach to the 
uncertainty utilitizes Monte Carlo 
simulations to generate a “cloud of 
uncertainty”.  The two circles in
each panel represent 1and 2 
confidence ellipses, i.e. ,
confident at the 
68.3% and 95.4%
levels, because they enclose
68.3% and 95.4% of the 
simulated solutions.
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Quantifying uncertainties in fitting models to galaxy spectra.

A series of spectral templates,
labeled with a parameter , 
are used to fit data.  One way
to quantify the uncertainty in
the template fitting is to use 
Monte Carlo simulations:
   -tweak each data point
    according to its error
   -redo the fit
   -repeat thousands of times
   -uncertainty in  estimated
    from standard deviation in
    the fits
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Quantifying uncertainties in a Principal Component Analysis.

A principal component analysis yields 'eigenspectra' that indicate underlying components to spectral 
data.  Think of eigenvectors in quantum mechanics and linear algebra, and expressing data in terms of 
linear combinations of the eigenspectra.

Eigenspectra are computed from a diagonalization of a covariance matrix defined by the data.  It would
be complicated to formally compute the uncertainties in the eigenspectra.  Monte Carlo simulations make
it easy. 

Redo the eigenspectra calculation 
thousands of times, with each simulation 
involving slightly-tweaked data
according to the data errors.  The plotted
error bars stem from the standard
deviations in the simulations.
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Let's do an example

Suppose we are interested in computing the total mass of all aliens on Planet X, but that our instruments can only 
detect aliens with mass of 30 kg or larger.  In our sampling of aliens with masses m=[35,45,55,65,75,85,95] kg we 
find N=[66,54,46,34,26,14,5] aliens.  The uncertainty on the jth count is 

Nj
=___________ and thus 


N
=[    ,    ,    ,    ,    ,    ,    ].

The observed trend from 35 to 95 kg is well fit with a first-order polynomial,
N(m) = -m/kg + 100,

where m is the mass in kg.  Thus the total mass between 100 and 0 kg can be computed after extrapolating this trend 
to zero mass:

What is the uncertainty on this estimate?  We can compute it by repeating the above exercise thousands of times, and
taking the standard deviation in the results as the uncertainty. (ch11/aliens.f)

N(m)

mass  m



12

Stochastic Methods

PHYS 4840      Mathematical & Computational Physics II

Just-in-Time Question: Random Number Generators 

Suppose you generate 100,000 simulated numbers using the 'rand' function of MATLAB.  What are the expected 
ratios N(0.1-0.2)/N(0.75-0.9) and N(1.3-1.4)/N(0.1-0.2), where N(x-y) is the number of times 'rand' yields a value 
between x and y?

General hint for coding
Beware that Homework #7 can take awhile, especially when doing 106 trials for the acceptance-rejection problems.  
We are not using supercomputers in PS 227, so carefully try to streamline your code for efficiency.  e.g., make all 
initial calculations such as P

max
=3/4 outside of your loops, and then only use P

max
 in the loop.  This will avoid doing

things like calculating 3/4 again and again and again...
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