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Ordinary Differential Equations I: Basic Methods

You have a differential equation to solve, for example 
 F = ma = dv/dt = m d2r/dt2 This is an ordinary differential equation of second order

Numerical Integration
If the force does not depend on the velocity, then 

v = ∫ F/m dt
r = ∫ v dt

Sometimes the force contains derivatives, sometimes the integral of F/m is simply not analytic, and sometimes the 
the force values come from a measurement and/or a data table: you must “numerically integrate.”

Numerical Differentiation
Alternatively, you may have the data table for the speed of a rocket and wish to compute the acceleration (and hence 
the force applied to it).

a = dv/dt

Taylor series approximation for the forward derivative:
v(t+t) = v(t)  v'(t)t  v''(t) t2/2 + ...

or
a(t) = v'(t) = [v(t+t) – v(t)]/t – v''(t) ½ t  + ...
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Ordinary Differential Equations I: Basic Methods

Euler Method
The equations of motion are solved iteratively through the use of

a(t) = [v(t+t) – v(t)]/t  O(t)
v(t) = [r(t+t) – r(t)]/t  O(t)

or
v(t+t) = v(t)  t a(t)  O(t2) I
r(t+t) = r(t)  t v(t)  O(t2) II

Program outline: 
 1. Specify initial position and velocity r(t

o
) and v(t

o
)

 2. Find the acceleration given the                position and velocity
 3. Use Equations I and II above to compute the              position and velocity r(t+t) and v(t+t)
 4. Go back to Step 2 until finished

Round-off error and truncation error 
See p. 28 & p. 39.  Is there a difference in round-off and truncation error, or are they just jargon for the same thing?

Q: Why do you think v in the above first equation pair has a larger truncation error than the second equation pair?
A:
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Ordinary Differential Equations I: Basic Methods

In the first half of this chapter we'll analyze the flight path of a baseball, with and without air resistance.  Including
air resistance makes this a more difficult problem; we'll use computational techniques to derive a numerical
approach to the solution.

F = mg + F
a
(v)

where F
a
(v) = C

d
A|v|v

In which direction does the drag force act?
The coefficient of drag C

d
 is             for small velocities and             for large velocities.

For a well hit baseball traveling at ~40 m/s, the drag and gravitational forces are equal in magnitude.
a. What does this imply for a “sky high” pop-up to the catcher?
b. What does this imply for a “line drive” basehit to center field?

Figure 2.2 shows the effects of “truncation error” for numerically computing the baseball's flight path.  Figure 2.3 
shows the effects of adding air resistance for a well-hit ball.  To paraphrase page 44 discussion: the effects of air 
drag are quite obvious for a ball that is hit hard (i.e., fast), and not for a poorly-hit ball (i.e., slow).  But wait a 
minute: I thought we agreed that the drag coefficient was large for small velocities and vice-versa?  Why do the 
effects of air resistance only become obvious for fast baseballs?
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Ordinary Differential Equations I: Basic Methods

Always try to check your numerical answer against a 'close' problem with a known analytic answer.

Quick review:
- truncation error vs round-off error (dropping higher order terms vs numerical storage limitations of cptr)
- time steps can be gauged conceptually, and through truncation error analysis (but not too small or you

will encounter round-off error)
- if on page 2 of these notes we say the truncation error is +O(t2), then why are the data suffering from
  truncation error on Figure 2.2 on p. 44 greater than those for the theoretical curve? i.e., shouldn't 
  dropping a term of order +O(t2) imply smaller displacements in x and y?
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Ordinary Differential Equations I: Basic Methods

Simple Pendulum
The simple pendulum problem can be solved in different ways depending on the amplitude of oscillation.

Small oscillations
d2/dt2 = g/L sin ~ g/L 
= g/L)½ 

This is a canonical problem in physics, e.g., Hooke's Law
d2x/dt2 =  k/m x   = (k/m)½ 

The solution is straightforward:  =  cos(t) does this satisfy all scenarios?

Large oscillations
For angles that don't satisfy the small angle approximation sin ~ , we can use an energy analysis

E = constant
E(t) = ½ m L2 (t)2 – mgL cos(t)
E(t=0) = ?
 = d/dt = (2gL-1[cos-cos

o
])½ 

 dt = d/(2gL-1[cos-cos
o
])½ 

using trig. identities and change of variables yields
T = 2/ = dt = 4 (L/g)½ K(sin½

o
)

for small angles, T = 2 (L/g)½ (1 + 1/16 2
o
 + ... ) is this consistent with the above solution?


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Ordinary Differential Equations I: Basic Methods

The numerical solution using the Verlet method is


n+1
 = 2

n
 – 

n-1
 + t2

n

In our Just-in-Time question, we saw that the Verlet and leap-frog methods
conserved energy, whereas the Euler method did not.  How were you able
to answer this using the plots on pp. 53-55?

One question I didn't ask: Why do the Verlet and leap-frog methods
conserve energy, whereas the Euler (and Euler-Cromer) method does not?

Q:  If v=L, then  must change since v changes.  But doesn't also equal 2/T, where T is constant?
A: 


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Slide 1
In gap in Slide 1, show graphs of F vs t and v vs t; make rectangles of width t; use midpoint rule to estimate height of rectangle (see my notes on yellow 
engineering paper).

Point them to Eqns 2.7 and 2.8
a(t) = v'(t) = [v(t+t) – v(t)]/t – v''(t) ½ t  + ... ie. a is slope of v vs t; leftovers 'converge'; the approximation improves as t0
Q: what happened to the t2 in the above equation?
A: we divided through by t  

Slide 2
Explain last term in Eqn 2.10 is truncation error.
2. Find the acceleration given the current position and velocity
3. Use Equations I and II above to compute the next position and velocity r(t+t) and v(t+t)

What do we mean by “compute a using current r and v”?  Doesn't the first equation on Slide 2 show that we need to use future v and current v?  No, show 
class that we compute a from dividing Equation 2.2 on p. 37 by mass.  Ask class this question, in fact.

Round-off error and truncation error 
see Fig 1.3 on p. 29
Q: Why does it go haywire below e-8?
A: round-off error

Q: Is there a difference between round-off and truncation, or is it just jargon for the same thing?  Both pp. 28-29 and p. 39 are dealing with approximations 
to a derivative.
A: Round-off error comes from limited ability of computer to compute small differences, whereas truncation is ignoring higher-order terms.

Q: Why do you think the above first equation pair has a smaller truncation error than the second equation pair?
A: It's better to estimate velocity at time t with the knowledge at the same time step, versus needing to know information from two different time steps.

Ordinary Differential Equations I: Basic Methods
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Slide 3
Free-body diagram
Do demo with a coffee filter and a crumpled coffee filter – motivate that it should depend on area A.  Show astronaut video.  Do vacuum tube demo.
Ask class about the terminal velocity of a human sky diver (60 m/s or ~120 mph).  Derive it.  C

d
A|v|v = mg --> v=sqrt(mg/AC

d
) ~ sqrt(800/0.125)

Work on board the first few iterations for a dropped baseball using the Euler method.
Edit code balle.f to show results; use tau=0.01 to recover handwritten table values.

See yellow engineering paper: y0=100; v0=0
Show how the numbers change with larger and smaller step sizes; do it with and without air resistance.

w/resistance final values: t
tot

=4.99 a
final

=-2.822 v
final

=-33.52603

w/out resistance: t
tot

=4.52 a
final

=-9.810 v
final

=-44.43930 (shorter and faster)

Is there anything goofy about these values?  Yes: y and a don't change from Step 0 to Step 1, though v does change.  Fact of life in numerical approximations.  
Smaller t would help, but that increases computing time and round off error may increase.  Also, y

final
<0.

In which direction does the drag force act?  Upwards (or more precisely, opposite the velocity)
The coefficient of drag C

d
 is     large        for small velocities and      small       for large velocities.  (constant at medium v; C

d
 inversely proportional to v for 

small v)
For a baseball traveling at ~40 m/s, the drag and gravitational forces are equal in magnitude.

a. What does this imply for a “sky high” pop-up to the catcher?  Quickly decelerates, much more so than without air resistance (cf on the moon)
b. What does this imply for a “line drive” basehit to center field?  Decelerates in x as much as it does in y -> parabolic path no longer holds

But wait a minute: I thought we agreed that the drag coefficient was large for small velocities and vice-versa?  But then why do we always think that the effects 
of air resistance only become obvious for fast baseballs?  It's because the drag force is a function of both C

d
 and velocity (squared), and thus the drag force is 

quite dramatic if v is large.  Note also that at 15 m/s, the book indicates that C
d
 is approximately constant (only increases with decreasing v for v<2 m/s).

Read 1.22 of Flying Circus of Physics (2nd edition).  He's wrong: the final velocity of a baseball dropped in air from a height of 213 m is about 137 km/h
(38.3 m/s).  Either he was thinking mph when it was really km/h, or he used no air drag (64.7 m/s or 233 km/h).
Also, google Felix Baumgarnter skydive: 36600m, 330s until parachute deployment @ 1550m.  Check w/balle.f: rho_air is smaller, so he went faster.

Slide 4
conceptually gauges --> see p. 42

if on page 2 of these notes we say the truncation error is +O(t2), then why are the data suffering from truncation error on Figure 2.2 greater than those for the 
theoretical curve?  ie. shouldn't dropping +O(t2) imply smaller displacement?
It's because we are dropping the acceleration terms for x and y (eq 2.24), and both of these values are in the negative direction – dropping a negative means 
it's artificially positive.

Ordinary Differential Equations I: Basic Methods
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Slide 5
Draw the free-body diagram and derive d2/dt2 = g/L sin ~ g/L   

md2x/dt2 = - mg sin() and x=L
Then plug in  =  cos(t) and show it works

Q: Does this satisfy all scenarios?  
A: No, only for small angles

E
f
= ½ mv2 + mgh, with v=L and h=-Lcos() leads to E

f
 = ½ m L2 2 – mgL cos

Group:
Q: E

i
=?  To put another way, Why is h=-Lcos()?  Or: Why is the total energy negative? (since =0 when released -> E

i
=-mgLcos

released
)

A: the textbook author has decided to define zero potential as a 90 degree angle away from vertically hanging down

You get the equation for  from setting E
o
=E

final
.

T=dt = d/(2gL-1[cos-cos
o
])½ 

T/4 = L/2g  d/[cos-cos
o
]½  from 0 to 

o
  

= L/2g  d[2sin2(-2sin2(]½  from 0 to 
o
  since cos2=1-2sin2  

which implies
T = 2 L/g  d[sin2(-sin2(]½  from 0 to 

o
  

= 2 L/g  1/sin()  d[1-sin2(sin2(]½  from 0 to 
o
  

let sinz=sin(sin( ->  cosz dz = ½ cos(/2) d / sin(
o
/2)

= 2 L/g  1/sin()  cosz dz sin(
o
/2) / cos(/2) / [1-sin2(z]½  from 0 to   

= 4 L/g  dz 1 / cos(/2) from 0 to   
= 4 L/g  dz 1 / [1-sin2(/2]½   from 0 to   
= 4 L/g  dz 1 / [1-sin2(/2)sin2(z)]½   from 0 to   

= 4 L/g K(sin[/2])

Ordinary Differential Equations I: Basic Methods
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Slide 6
Q: In our Just-in-Time question, we saw that the Verlet and leap-frog methods conserved energy, whereas the Euler method did not.  How were you able 
to answer this using the plots on pp. 53-55?
A: Energy scales as mgL cos

m
 so just look at the maximum angle

Why is Verlet better than Leap-Frog, which in turn is better than Euler?  The truncation errors differ.
Verlet r

n+1
 = 2r

n
 – r

n-1
 + 2a

n
 + O(4) (2.59)

Leap-Frog r
n+2

 = r
n
 + 2v

n+1
 + O(3) (2.51)

Euler-Cromer r
n+1

 = r
n
 + v

n+1
 + O(2) (2.21)

Euler r
n+1

 = r
n
 + v

n
 + O(2) (2.19)

Q: If v=L, then  must change since v must change.  But doesn't also equal 2/T, where T is a constant?
A: I'm mixing instantaneous versus time-averaged quantities.  In the first case  is an instantaneous quantity, whereas in the latter case it's averaged over 
(many) cycles.

Homework 1 Recap:
#23: you can combine terms to remove the minus sign

a
head

-a
feet

= v2/r – v2/r = (2(R+h)cos)2/([R+h]cosT2) – (2(R)cos)2/(RcosT2) = 42hcos/T2

#26: for negative x the series is alternating plus and minus; terms need to cancel each other out, leaving small remainder that is susceptible to round-off error

Ordinary Differential Equations I: Basic Methods
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Terminal velocity appendix

http://www.reddit.com/r/askscience/comments/1193gy/if_the_terminal_velocity_for_humans_is_around_125/

See terminal.speed.txt file

Ordinary Differential Equations I: Basic Methods
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