
1

Ordinary Differential Equations II: Advanced Methods

Even a simple two-body problem in gravitation is difficult to do with prior methods.

Different pieces of information help us to properly constrain motion:

F = G M m / |r|3 r [ conserved? ]
E = K + U = ½ m v2 G M m / r[ conserved ]
L = r x p [ conserved ]

There is an analytic solution to the simple two-body problem, but if we add drag or a third mass, the problem is much 
more difficult

F =  G M m / |r|3 r +  G M' m / |r'|3 r' => numerical approach!

One can use the Euler method to compute the trajectory, but energy is not conserved, hinting that the approach is 
incorrect.  Another clue is that a supposedly circular orbit scenario results in the orbiter wandering away when the 
Euler method is used (Fig 3.2).

Runge-Kutta
The 4th order Runge-Kutta approach to numerically solving ODEs may be the most popular – it is both accurate and 
fast.  The text nicely outlines the approach.  To summarize in brief, the Runge-Kutta method utilizes Taylor series 
expansions done about the midpoint of the time interval, and uses the Euler method to approximate the (position) 
evaluated at the midpoint.  

dx/dt = f(x(t),t) x(t) = x(r,t)

The function varies over the time step, so we estimate and average x* at the midpoint by extrapolating forward:

x(t+t) = x(t) + t f[x*(t+t/2),t+t/2] x*(t+t/2) = some order of Taylor series extrapolation from x(t)

PHYS 4840      Mathematical & Computational Physics II 1



2

Ordinary Differential Equations II: Advanced Methods

Example: dy/dt = t + y, y(t=0) = 1 solution: y(t=0.1) = 1.1103418

Euler y
n+1

 = y
n
 + t y'

n
 + O(t2)

t=0.02 t
n

y
n

y'
n

t y'
n

0 1.0000
0.02 1.0200 1.0400 0.0208
0.04 1.0408 0.0216

1.0624 1.1224 0.0224
0.08 1.1648 0.0233
0.10 1.1081

Euler Predictor-Corrector y
n+1

 = y
n
 + t [y'

n
+y'

n+1
]/2 + O(t3)    where the Euler method is used to compute the “intermediate” y

n+1
 

                                                                 improved            improved                                intermediate      intermediate
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n

y'
n

t y'
n

y
n+1

y'
n+1

0 1.0000 1.0000 0.0200 1.0200
0.02 1.0204 0.0208 1.0412 1.0812

1.0416 1.0816 0.0216 1.1232
0.06 1.1237 0.0225 1.0862 1.1662
0.08 1.0866 1.1666 0.0233 1.1099 1.2099
0.10 1.1104

4th order Runge-Kutta y
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n
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1
 + 2k
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 + 2k

3
 + k

4
] + O(t5)
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2
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1
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3
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n
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n
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2
) k

4
=f(t

n
+ t, y

n
+ t k

3
)

t=0.1 k
1
=1 k

2
=1.1 k

3
=1.1050 k

4
=1.2105

→ y(0.1)=1+0.1103417
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 Global Local Evaluations of 
Method Name   Estimate of slope over time interval Error Error f(x,y) per step
Euler   Initial value O(t) O(t2) 1
Euler Predictor-Corrector   Arithmetic average of initial and final predicted slope O(t2) O(t3) 2
4th order Runge-Kutta   Weighted average of four values O(t4) O(t5) 4

Method Step size Result Error # function evaluations
Euler    0.02 1.1081 0.0022   5
Euler Predictor-Corrector 0.02 1.1104 0.0001 12
4th order Runge-Kutta 0.1 1.11034 0.000001   4



Integration (a.k.a. “quadrature”)
Evaluating 

I = f(x) dx from x=a to x=b 
is equivalent to solving for 

I  y(b) where dy/dx=f(x) and y(a)=0.

Two techniques we've covered for solving these types of problems are the Euler method and the more accurate
and faster 4th order Runge-Kutta approach.

Quick Review of integrating ordinary differential equations

Euler method: extrapolate the derivative at the RK: the derivative is evaluated four times at
start of each interval to find the next function value. each step, once initially, twice at trial midpoints,

and at the trial endpoint.  (Numerical Recipes)

Adaptive Time Stepping
Sometimes one can be computationally more efficient by actually incorporating additional calculations.  One such 
example is adaptive time stepping, where additional computations dealing with smaller step sizes is performed.  If
smaller step sizes are warranted (e.g., improved accuracy), then the program automatically decreases the step size
for ensuing computations.  Conversely, if the canonical step performs just fine in terms of some metric like energy
conservation, then the step size can be increased for ensuing computations.  The savings can sometimes be orders
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(continued) 
of magnitude, not merely tens of percent.  Take the example where a Runge-Kutta computation is carried out over
both a step size 2h and two steps of size h.

If the exact solution in going from x to x+2h is y(x+2h) and the approximate solutions are y
1
 (one step of 2h)

and y
2
 (two steps each of size h), then

y(x+2h) = y
1
 + (2h)5+ O(h6)

y(x+2h) = y
2
 + 2(h)5 + O(h6)

The difference between the two estimates is a measure of the truncation error:
  y

2
 – y

1

This degree of accuracy can be monitored by adjusting h.  Since 4th order Runge-Kutta is accurate to fifth power,
 scales as h5.  Therefore if we take step h

1
 and produce error 

1
, then the step h

0
 that would have introduced error


0
 is found from

h
0
=h

1
 

0
/

1
 0.2 (1)

In short, if  is larger than 
0
 in magnitude, then Equation 1 tells us how much to decrease the stepsize when we 

re-try the present (failed) step.  On the other hand, if  is smaller than 
0
 in magnitude, then Equation 1 tells us 

how much to increase the stepsize for the next step (Numerical Recipes).
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Question: Why does the first sentence in the previous paragraph say “re-try the present step” whereas the second 
sentence says “for the next step”?

Pendulum examples
Suppose we have a simple pendulum of length 2.0 m; the rod is massless and there is a ball of mass 0.5 kg at the
end.  We know that for small oscillations the period is ___________________________________.

How would the period change if it were a “physical” pendulum?  (i.e., the mass is distributed throughout the rod, 
not just at the end)

Suppose we achieve a certain acceptable accuracy in our computations using timestep h.  If the simple pendulum's
length were doubled, what should we use for the timestep to achieve the same accuracy?

Spring example
Now suppose we have a spring of spring constant k, and we achieve a certain acceptable accuracy in the period using 
timestep h.  How should our timestep change if the spring constant is quadrupled?
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