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Analysis of Data
This chapter covers the analysis and modeling of data.  Conceptually, this may well be the simplest material 
covered in the book.  On the other hand, it is likely the most useful material we will discuss: the future for many of 
you is likely to involve piles of data, data that you will need to approach in a sophisticated manner.

Typical tasks for statistical analysis of data:
sorting
measuring the mean, standard deviation, variance, skewness, ...
fitting models, goodness of fit
computing correlation coefficients for two sets of data
are two distributions different?
computing confidence limits on estimated model parameters

An excellent resource to have is Data Reduction and Error Analysis for the Physical Sciences by Bevington & 
Robinson.

Errors in Data
People frequently refer to the “error” in data when what they really imply is the “uncertainty” in the data.  
Moreover, there are two types of data uncertainties, statistical and systematic.  

In CCD photometry we measure how bright an object is by slapping down an aperture onto a CCD image and 
extracting the amount of flux from the object.  The statistical uncertainty in the measurement would include how 
variable is the nearby sky (background) per pixel (

sky
), and the number of pixels in your aperture: 

sky
 √N

pixels
.  It's 

basically Poisson statistics of the randomness in a system.
The systematic uncertainty here would be the uncertainty in the overall                     of the flux.  In other words, one 
typically measures the brightness of a known flux standard to scale one's observations.  But this measurement may 
be compromised (clouds, someone left the light on in the telescope dome, a mouse chewed through a cable, ...).

Can you describe another example of statistical vs systematic?
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Analysis of Data

Mean and Standard deviation
When we did experiments in grade school or junior/senior high, many of us were taught to express the “error” in a 
measurement according to the smallest/finest scale on the instrument, e.g., if we measured the length of a block of 
wood with a meter stick marked every millimeter, the “error” in the length was a half millimeter.
You may have since learned (in Physics I/II ?) that in most situations scientists prefer to characterize a measurement 
by computing the average result from many, many repeated experiments.  Moreover, you may have learned that a 
powerful way to characterize the reliability of a result was to compute the standard deviation of the results.

The mean () and standard deviation () of a statistical sample are easy to compute.  

What does someone imply when they say a sample mean is ?

Similarly, what does 2imply?  3?  
A 2 deviation should occur how often?

What is the uncertainty in the mean of a distribution?  Assume the uncertainties in each data point are roughly the 
same.

Which of the above parameters change when the number of measurements is tripled?  By how much?
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Analysis of Data

Student t-factor
Earlier we saw that 2 referred to a ~95% “confidence interval”.  However, this is only formally true for 
_____________________ . If only a limited number of measurements are available, then the student t-factor t 
more accurately expresses the 95% confidence interval.

Jacknife and Bootstrap Resampling Techniques
There are alternative ways to estimate uncertainties using the data themselves, including Monte Carlo techniques 
(Chapter 11).  Sometimes these are not just the best way to compute the uncertainties, but the only way.  Many 
researchers prefer these techniques since they do not involve any parametric assumptions (e.g., a Gaussian 
distribution).

Monte Carlo: Generate synthetic versions of the original data set, randomly tweaking each value according to its 
uncertainty.  Recompute the desired parameter, and the dispersion in the parameter values is the uncertainty.

Bootstrap: Generate a large number of synthetic data sets, randomly drawing from the sample itself.  Each synthetic 
data set will therefore consist of a subset that is duplicated data.  For each synthetic data set you re-compute the 
desired parameter, and the dispersion in the parameter values is the uncertainty.

Jacknife: Generate a large number of synthetic data sets, each time randomly excluding one or more data points.
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Analysis of Data

Moments
The nth moment of a distribution deals with summing each data point to the nth power.  The mean depends on the 
first moment of the data, the standard deviation on the second moment.  The skewness of a distribution depends on 
the third, and the kurtosis on the fourth.  Skewness measures the degree of asymmetry of a distribution about the 
distribution's mean value.  Kurtosis measures how peaked or flat is a distribution.

e.g., skew = N-1  [ (x
i
 – x

mean
) /  ]3

Are two distributions drawn from the same parent sample?
i.e., do they have the same means and/or variances?

One way to measure this is with the student t-test.  Routines for the
student t-test and other similar measures are widely available.

Are two distributions different?
The degree of “differentness” between two distributions can be
gauged via a chi-square test or a Kolmogorov-Smirnov test.  You can
estimate the former by binning the data into N bins and computing:

2 =  (R
i
 – S

i
)2 / (R

i
 + S

i
)

Small values of 2 indicate similar distributions.

See Numerical Recipes for a more thorough discussion.
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Analysis of Data

Correlations
If you think two distributions are linearly correlated, you can quantify the extent to which they are correlated via:

r =   / sqrt(2) / sqrt(2) where  = x
i
-x

mean
,  = y

i
-y

mean

A value near zero indicates that x and y are ______________.  A value of 1 implies a perfect ________ correlation, 
whereas a value of -1 means the two parameters are _______________ (one _______ while the other __________).

Name examples of two parameters that should yield r=0, -1, and +1.

A more generic way to test for correlations is a non-parametric test (or rank correlation).  The Spearman rank-order 
correlation coefficient is the same as the linear equation above, but you replace x

i
 and y

i
 with their ranks within each 

distribution (i.e., sort them first).
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Analysis of Data
Curve Fitting – why bother?

1. You want to estimate a value where there are no data points.  We've already covered interpolation in this course, 
where you estimate a value between known data values.  Another situation relies on extrapolation where one needs 
to estimate a value beyond known data values.  

Extrapolation is, of course, inherently risky.  
At right is a plot of how I fit a model to 
galaxy rotation curves.  I did this since I 
wanted a physically-uniform method of 
estimating how fast a galaxy rotates, and not 
all of my rotation curve data extended all the 
way to the 'optical radius.'

2. You want to make predictions, based on a 
model, for future measurements.  For 
example, you are writing a proposal to use the 
Hubble Space Telescope, and you need to 
estimate how bright your proposed source will 
be, in order to make an educated guess as to 
the requisite integration time.

3. You want to see how well the data match 
a theoretical prediction.  Or alternatively, you
want to constrain the parameters of a 
theoretical model.
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Analysis of Data
Curve Fitting – continued

One aspect of curve fitting that you will explore in Homework #5 is the appropriateness of the sophistication of 
your fit.  In other words, how fancy can the model be before one actually loses all sense of reasonableness in the fit? 
One can perfectly fit a polynomial curve to several data points as long as the polynomial is of sufficiently high 
order.  But what does it mean to fit a 12th order polynomial to a simple data set?  e.g., weight vs height

If the uncertainty for each data point is accurately estimated, then on average one would expect a reasonable fit to 
be, on average, within one error bar for each data point.

What can you tell me about the below fit?
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Analysis of Data
Curve Fitting – continued

Do we fit data to a model, or a model to data?

This chapter discusses, among other things, ways in which one could carry out a fit.  In particular, the text describes 
how to carry out a least squares (difference) fit.  Why not simply carry out a least (difference) fit?  How about a 
least absolute value (difference) fit?  Name some pros and cons to these various approaches to fitting.

How do we know if a fit is decent?  How can we quantify the “goodness” of a fit?
reduced) chi square

The text provides the chi square formula:

2(a
1
, a

2
)  =  

i
-2 (a

1 
+ a

2
x

i 
- y

i
)2

what is 
i
?

what is a
1
+ a

2
x

i
?

what is y
i
?

What should 2 roughly be if each data point is, on average, one error bar away from the fit?

A reduced chi square is 
2/(N-M), where N-M is the number of data points minus the number of parameters in your fit

What would it mean if 2 is close to 0?
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Analysis of Data
Spectral Analysis - Excerpted from Numerical Recipes

“If you speed up any nontrivial algorithm by a factor of a million or so, the world will beat a path towards finding 
useful applications for it.”  Typical applications for the Fast Fourier Transform include the convolution or 
deconvolution of data, correlation and autocorrelation, optimal filtering, power spectrum estimation, and the 
computation of Fourier integrals.  Discuss example of convolving heterogeneous CCD data all to one spatial resolution.

A physical process can be thought of as occurring in the time domain or in
the frequency domain.  In the time domain, you may have a function h that
changes with time t, h(t).  In the frequency domain, phenomena may occur
with amplitude H at specific frequencies f, H(f).  Sometimes the analysis is
easier or more conceptual to understand in one of the domains, and the 
way to switch back and forth between the two domains can be carried out 
with a Fourier Transform, 

H(f) =  h(t) e2ift dt - < t < +
h(t) =  H(f) e-2ift df - < f < +

The transform of the sum of two functions is the sum of the 
transforms, and the transform of a constant times a function is the 
constant times the transform of the function.  In other words, a 
Fourier transform is a __________________ .

Transforms do not have to be carried out in the time­frequency 
domains.  If a transform occurs spatially as a function of position 
(with units of meters), then the inverse transform would be carrried
out with units of _________________.
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Analysis of Data
Spectral Analysis – continued

If there are symmetries within the time domain of a function, then there are also certain symmetries in the frequency 
domain:

If h(t) is real, then H(-f) = H(f)* ‡
If h(t) is imaginary, then H(-f) = -H(f)*
If h(t) is even, then H(-f) = H(f)
If h(t) is odd, then H(-f) = -H(f)
If h(t) is real and even, then H(f) is real and even
If h(t) is real and odd, then H(f) is imaginary and odd
If h(t) is imaginary and even, then H(f) is imaginary and even
If h(t) is imaginary and odd, then H(f) is real and odd

‡ Recall that the complex conjugate of a number is the number that has the same real part as the original number 
but an imaginary part that differs only in its sign.  The complex conjugate is denoted by an asterisk immediately 
following the number or variable, e.g.,

A = (2 + 2i)
A* = (2 + 2i)* = 2 – 2i i = (-1)½ 

Some more basic properties of Fourier Transforms (indicated by ):
h(at)  |a|-1 H(f/a) “time scaling”
|b|-1h(t/b)  H(bf) “frequency scaling”
h(t-t

0
)  H(f) e2ift_o “time shifting”

h(t) e-2if_ot  H(f-f
0
) “frequency shifting”
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Spectral Analysis – continued
Nyquist Sampling
Suppose  is the time interval between consecutive samples, h

n
 = h(n),    n = - to +i.e., -1 is the sampling rate.

A special frequency is the Nyquist frequency, f
Ny

 = ½ -1.  If a sine wave of the Nyquist frequency is sampled at its 

peak, then the next sampling will occur at its trough, followed by another sampling at the ensuing peak, and so on.  
Nyquist sampling of a sine wave occurs twice per cycle.

Nyquist sampling has positive and negative attributes.  The good news derives from the sampling theorem:  If a 
continuous function h(t) is sampled at a rate -1 and is bandwidth limited to frequencies smaller in magnitude than f

Ny
 

[i.e., H(f) = 0 for |f| > f
Ny

], then h(t) is completely determined by its samples h
n
.  

The exact formalism is
h(t) =  h

n
 sin[2f

Ny
(t-n)]/(t-n)

A common situation is that a signal is bandwidth limited.  For example, the 
signal may have passed through a filter of a known frequency profile.  The 
sampling theorem indicates that all of the information contained within the 
signal can be measured by sampling at a rate that is twice the maximum 
frequency of the filter.

The negative attribute occurs for signals that are not bandwidth limited to less 
than the Nyquist frequency.  In such instances all of the power spectral density
that is outside -f

Ny
 < f < f

Ny
 is 'spuriously' moved into that range.  This is known

as aliasing.  Any frequency component outside of (-f
Ny

,f
Ny

) is aliased (falsely 

translated) into that range by the very act of sampling.
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Analysis of Data
Statistical Analysis (thanks to Professor Ken Gerow of the Department of Statistics!)

Please download the following interactive (.xls) spreadsheets from http://physics.uwyo.edu/~ddale/teach/05_06/stats/
SD, SD_SE, t-demo_CI, CI_1, reg_resids, leverage, correlation, single_mean

SD:
What 5 values give a sample standard deviation of ~10?
What is the relation between sample standard deviation and sample variance?

SD_SE:
Give a quantitative answer to the given question.

t-demo_CI: (toolsprotectionunprotect sheet)
Set sample mean=100, sample standard deviation=8, sample size=34.
What is the 95% confidence interval on the mean?
How is this related to the standard deviation?

CI_1:
By what factor are the error bars in the lower panel smaller than those in the upper panel?
Execute several simulations.   Typically, how many data points do not have error bars that overlap with the average?
Does this make sense?

reg_resids:
What is y-y

fit
 for data point #13?

leverage:
For an outlier with x=24, what values of y give an 'unusual influence' to the fit?
What is the difference in slope at the critical value of y?  (where the unusual influence kicks in)  Compare the slope 
that incorporates the extra data point to the slope that does not.
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Analysis of Data
Statistical Analysis 
correlation: (toolsprotectionunprotect sheet)
Qualitatively describe the data distribution for 
r=0
r=0.2
r=0.9
r=-0.9

single_mean: (toolsprotectionunprotect sheet)
click on 'two-tailed'
What is the t-factor for N=40 and
CI=95%?  
    =68%?  
    =75%?
What is the 68% CI for the mean, for 〈x〉=308, SD=10, N=81?
What would the CI be for a single data point with the same average and standard deviation?
What would the CI be for two data points  with the same average and standard deviation?
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