
 
Hypothesis Testing 

 

Sticking with our fish example , the biologists wanted to see 

whether or not the fish population had increased due to some 

management intervention.  Thus, on the assumption that the numbers of 

fish caught in their netting efforts reflect the population size,  the 

hypothesis they tested is: H: average number of fish per net is higher 

than 12 (the historical value).  Does the data support this hypothesis?   

We need a philosophical pause here. There are some circumstances 

wherein it will be very easy to answer the question, without dressing up 

the data in a cloak of statistics. 

Suppose they caught fish in each of 10 nets and and the average in 

their sample was 12.24.  Is this the evidence they seek?  The short answer 

is no (my opinion).  Their new average is indeed a larger number than 12, 

but not in a biologically meaningful way.  Indeed, in this case, I would 

argue against applying any sort of formal test, since simple common 

sense would argue here that that there is no reasonable evidence of 

biologically significant improvement.     

Suppose they caught fish in each of 10 nets and and the average in 

their sample was 42.54 (and suppose that the smallest number in a 



single net was 24).  Is this the evidence they seek?  The answer is easily 

yes, and dramatically so.  This also requires no formal testing.  The 

evidence is overwhelmingly clear.  Formal statistical tools are not 

required. 

Now, suppose they caught fish in each of 10 nets and and the 

average in their sample was 15.4 (sound familiar?).  Is this the evidence 

they seek?  Read on. 

 
Null and Alternate Hypotheses, Alpha 

 

A good analogy to scientific hypothesis testing is a court trial.  An 

individual is brought to trial if there is some reason to believe they may 

have committed a particular crime.  The starting point for the trial is a 

presumption of innocence, and ask whether or not the evidence would be 

plausible if in fact he or she were indeed innocent.  In science one does a 

hypothesis test to determine whether a postulated (or hoped for) 

phenomenon has occurred.  A null hypothesis is formed that denies that 

occurrence, and the data is examined to see if it is consonant  with or if it 

contradicts the null hypothesis.  In a court trial, if the hypothesis of 

innocence is rejected the defendant is declared guilty.  In a statistical 

hypothesis test, we say that the null hypothesis has been rejected.  

Another commonly used phrase is to say that we have a statistically 

significant result, meaning only that the result does not appear plausible 



if the null were in fact true.  In particular, statistically significant does not 

mean “significant” in our English use of the term.  It does not mean 

“important”. 

In a court trial, there is some chance that an innocent person is 

found guilty; similarly, there is a chance that we could reject the null 

hypothesis when in fact it is (at least approximately) true, a so-called 

false rejection or false significance.  A difference is that in a hypothesis 

test, we can choose the amount of risk we are willing to take of a false 

significance.  For most conventional scientific use, this chance, the so-

called alpha-level,  is set at 0.05.  The particular choice of 0.05 is a 

historical artifact, but it does reflect the sense among scientists that in 

most situations, 1 chance in 20 of a false significance is an acceptable 

risk   Larger values (0.10, 0.15) are often used in pilot studies, where 

the consequence of false significance is that some ultimately non-

significant variables continue to be measured in the main study (at some 

expense).  Lower alpha levels (0.01, say) might be used when a false 

significance has large and unpalatable consequences.  

So we have null and alternate hypotheses, and have chosen an 

alpha level. The question at hand is how do we measure the evidence?  

There are several possibilities that occur to most people when they 

ponder this question; I’ll address them in turn.  The first idea is to 

calculate the probability of our result (the mean of 15.4) if the null were 



true.  Low values indicate evidence against the null.  The second is to 

measure how far the observed value is from the null (counting in SDs of 

the statistic).  The further away, the stronger the evidence.  Both of these 

are flawed; the first fatally, the second only somewhat.  I’ll discuss both 

of them in turn, then discuss our current approach, based on so-called 

p-values. 

 

   The Probability of the Observed Result 

Using the fish example, one thought is to ask whether our result (a 

mean of 15.4 fish per net) has high or low probability of having occurred 

under the condition that the population mean is still 12.5.  If it has a 

suitably low probability, we could reject the null hypothesis.  This 

sensible sounding idea suffers from a fatal flaw: the probability of any 

single value is technically zero.  The chance of getting 12.5 is zero; the 

chance of getting 100 is zero.  How can this be? We did get 15.4!  How 

could the probability be zero?  This is surely paradoxical. 

There are two parts to the argument.  The first is based on the 

assumption that the mean is a value from a continuous distribution.  

Soon, we’ll need that distribution to be at least approximately Normal, 

but for now, simply continuous is enough.  Probability is defined for 

intervals in such a distribution (think of area under a curve between two 

points).  There is positive probability of a value between 15 and 16 (or 



any other biologically possible interval), but, technically, a probability of 

zero (no interval, so no area) is assigned to any given point.  This is an 

odd idea, and doesn’t sit comfortably with most folks the first time they 

encounter it (include me in that list!).   

Here is the resolution to the paradox. When we measure anything, 

we always round our answers.  So what we’ve recorded as 15.4 is really 

known only to be between 15.35 and 15.45.  That does describe a narrow 

interval, so a measured answer of 15.4 (with rounding) does have non-

zero probability (that is, whatever the probability is of being between 

15.35 and 15.45.  We could compute the probability of getting 15.4 plus 

and minus rounding, but then our answer would depend on the level of 

rounding, leading to somewhat arbitrary probabilities.  The more 

precisely we measure (i.e. the narrower the rounding interval), the lower 

the probability, with no connection at all to degree of evidence for or 

against the null hypothesis. 
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Using the graph for illustration, we could compute the chance of 

being between 1.8 and 1.9 SDs above the mean, but there is no 

probability defined for, say, -1.3 SDs below the mean (or any other single 

point!).  

    Distance From Null 

Another approach that occurs fairly readily is to calculate the 

distance between the observed mean and the null.  Here it is 15.4 – 12.5 

= 2.9.  It becomes clear fairly quickly that we can’t judge this value all by 

itself because we don’t know if 2.9 is big or small; we need to assess it 

relative to the variation in the mean.  If we scale it by the SD of the mean 

(which here is  4.72 / 10 1.49= ), we get 2.9/1.49 = 1.94.  Thus our 



observed mean is 1.94 SDs from the null. This in fact is the way we used 

to do hypothesis tests back in the old days (you remember: when we 

walked to school barefoot in the snow, and used pencils for 

computers…).  Essentially, we would pick a cut-off point based on certain 

criteria (I’ll come back to these below, when I compare our current 

method (based on so-called p-values)). This would be called the “critical 

t-statistic”.  If our observed t-statistic (referencing the fact that the 

distribution of the mean is assumed to follow a t-distribution) is larger 

than the critical value, we declare there to be sufficient evidence with 

which to reject the null hypothesis.  This method has a weakness that I 

will address when I compare this method to the p-value approach. 

 

 
The p-value of a Hypothesis Test 

 

By definition, the p-value for a hypothesis test is the probability of 

obtaining a test statistic as extreme or more extreme than the observed 

test statistic, assuming the null hypothesis to be correct.  The starting 

point for calculating the p-value is in fact the distance from the null (in 

SDs) of the observed statistic. (And remember we are talking about the 

SD of the distribution of the statistic, not the SD among individual data 

points.)  If you wish, take a look at the linked Excel spreadsheet for a 

dynamic study of p-value calculations, exemplified for a two-tailed test.  



To interpret a p-value, compare it to alpha.  If the p-value is less than 

alpha, we reject the null hypothesis  . 

For our example, the observed mean of 15.4 fish per net is 1.94 

SDs above the null mean of 12.4 fish per net.  Assuming approximate 

Normality for the distribution of the mean, and then fudging the Normal 

to account for the estimated, as opposed to known, SD, we use the t-

distribution with 9 degrees of freedom.  In that distribution, the chance 

of being 1.94 SDs (or more) above the mean is 0.0415.  This is marginally 

less than a typical choice of 0.05α = , so we could say the result is 

marginally significant; there is some, but not overwhelmeing evidence (as 

determined by 0.05α = ).  Note that our language would be different had 

we chosen 0.15α =  or 0.01α = .  The degree of significance has to be 

judged in context of the amount of risk we are willing to take of false 

significance.  Synonyms: alpha is sometimes called the significance level 

of the test, and the p-value the observed significance level. 

 

 
P-value versus critical value approach 

 

In the old days, one would do a hypothesis test by choosing an 

alpha, then determining (with respect to the appropriate distribution (a t-

distribution with 9.d.f. for our example), a so-called critical value.  This 

value was some number of SDs from that distribution such that the 



probability of being that far or further from the null was equal to alpha.  

Then, one computed the observed number of SDs from the null ones 

actual mean was.  If this observed value was further than the so-called 

critical value, reject.  If not, fail to reject.  This is mathematically identical 

to, “if the p-value is less than alpha, reject.  If not, fail to reject.”  The 

utility of p-values is that, at a glance, a reader can compare a given p-

value against their own choice for alpha, and come to their own 

conclusions.  The use of p-values was made possible by modern 

computers; prior to the early 1980’s, people were restricted to such 

information as was published in tables (the kind commonly found in the 

back of statistics textbooks); space and computational limitations held us 

to the critical value approach.   

 
One-tailed and Two-tailed Tests 

 
 

In the fish example, the research question was aimed at detecting 

an increase. If there is interest in only one direction, or if there is 

theoretical justification for a given direction (“We’ve seen it go this way in 

the past, so we hypothesize it will do so again here”), then the test is a 

one-tailed test.  Operationally, if the observed effect is not in the 

direction specified by the research hypothesis (and formally encoded in 

the alternate), stop.  Done.  There is clearly no evidence against the null 



in favor of your alternate.  If the observed effect is in the hypothesized 

direction, then proceed to compute the p-value. 

Computer packages routinely do two-tailed tests by default.  You 

can over-ride that default with an option somewhere along the way.  

Alternately, you can get the p-value for your one-tailed test by dividing 

the two-tailed p-value by two.  The p-value for one-tailed test (if the 

result is in the desired direction) is always precisely ½ that for a two-

tailed test. 

The test yielded a p-value of 0.0415, suggesting that there was pretty 

decent evidence (against an alpha of 0.10) in support of their 

management change.  This p-value can be had from a statistics package 

easily: enter the data, and ask for a one-tailed test for an increase (or 

divide the default two-tailed p-value by two).   
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