
 
The Distribution of a Statistic 

 

Let’s forget science for the moment and consider the simple 

experiment of flipping a single coin (fair coin, fair flip), with the result 

hidden from you.  Most folks, if asked, would say that there is a 50% 

chance that the coin is heads.   What is the basis for that line of thinking?  

(There are subtle, perhaps only semantic, questions regarding the use of 

the word “chance” once the coin is flipped, but we won’t go there just 

now.)  The basis for claiming that there is a 50% chance that the coin is 

heads is simply the understanding that in a very large number of flips of 

a fair coin, heads will result about 50% of the time.  We intuitively (and 

often without explicitly realizing it) apply our understanding of the long-

run of coin flips to the current one. 

As a basis for making a judgment regarding the current situation, 

one imagines what the outcomes would be if the experiment were 

repeated a large number of times.  Note that one doesn’t need to actually 

do the large number of repeats of the experiment to use it as a basis for 

inference. 

Back to science.  For convenience, I will stick with the example of 

the sample mean of a random sample of observations.  Here, the sample 



mean is the chosen statistic; the population mean is the parameter being 

estimated.  The distribution of the mean is the distribution of values of 

that statistic you would get by repeating the study a huge number of 

times.  Many (maybe most) statistics authors call this the “sampling 

distribution.”  I find the adjective “sampling” adds more confusion than 

clarity, and find that omitting it doesn’t cause any problems at all (other 

than the need to explain why I don’t use the term). In practice, this idea 

of repeating a study a large number of times is absurd: it’s simply not 

possible to repeat studies under identical conditions a large number of 

times.  Nonetheless, just as in the coin flipping example, we can 

conceptualize the repeats.   

In principle, if one repeated the study an infinite number of times, 

the average of all the sample means would in fact be the true population 

mean.  This is true because the procedure (simple random sample from 

some population, sample mean as chosen statistic) is known to be 

unbiased.  (In fact, the previous two sentences are just different ways of 

saying the same thing).   

In fact, this notion of the long-term predictability (of certain 

features) of random events underpins all of statistical inference  . 



 
Assuming Normality 

 

For the most commonly used statistics (means, differences in 

means, proportions, differences in proportions, regression slopes), we 

often choose to assume that a statistic has an approximately Normal 

distribution.  Indeed, most of our regularly used statistical inference tools 

depend on this assumption.  This assumption will be valid if the 

underlying randomness in the data is approximately Normal or if our 

sample size is large enough (how large is large enough depends on the 

underlying distribution).   

Often biologists encounter data that are skewed; count data are a 

common example  .  Another commonly encountered type of (way 

seriously!) non-Normal data is Binomial data. You have Binomial data if 

your response is recorded as a dichotomy: success/failure, male/female, 

presence/absence, etcetera . 

 
The SD of a Statistic 

 

Critical to statistical inference is the ability to estimate the SD of 

your statistic.  This SD is the variation among values of your chosen 

statistic in a large number (in principle, infinite!) of repeats of your study.  



Let’s assume for now that you have reason to believe that your statistic 

has (at least approximately) a Normal distribution.  The value of your 

statistic itself stands as an estimate of the mean of that distribution.  

How can we possibly estimate the SD of that distribution when we only 

have a single value (your actual mean, or whatever) from it?   

It turns out that the variation in the distribution of a given statistic 

is related to the variation in the raw data (in various ways: the formulae 

are different depending on the choice of statistic and so on).  For 

example, the formula to estimate the SD of a mean from a random 

sample is just ( ) SDSD mean
n

= , where SD (with no qualifying parenthetic 

phrase) is the standard deviation among the sample values, and n is the 

sample size.  . 

A common name for what I call the SD of a statistic is the Standard 

Error (SE) of a statistic.  I don’t like the term (there is no “error” involved, 

other than random “error”, which is present everywhere, so why bother 

highlighting it here?).  I find that when I use SD for the standard deviation 

of one distribution and SE for the standard deviation of another, people 

get confused.  Down with confusion!  Unfortunately, I doubt my crusade 

will get very far… 
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