Partial Differential Equations |
The traditional categorization of PDEs s hyperbolic, parabolic, and elliptic, as described in your text.
02u/ot? = V2 92Ul ox? hyperbolic wave equation (speed V)
ou/ot = d/dx (D du/oX) parabolic diffusion equation (diffusion coefficient D)
d2ulox? + 02uldy? = p(x,y)  dliptic Poisson equation (source p i ‘

Thefirst two equations are examples of initial value (ak.a. Cauchy) = o o o o] o o [ .
problems. If you feed your code theinitial conditionsfor u, thenthe « .| o, . | | . ; |hm,_“h,,_}.

equations will predict future values of u for all later times. Onthe | = = R
other hand, the third equation exemplifies a boundary value (or T L o PG A5 3
static solution) problem. Feed your code the values of u along the s e '_ P
outer regions of a grid, then the equation provides you the values of ey
u elsewherein the grid. o it
The challenge for initial value and boundary value problems i 2309 % iiepigts
Isto find away to integrate forward in time, or to integrate 2 iirors svi i 5 )
spatially inwards, with an acceptable accuracy level. R v RO

- 1 o o o o .
Moreover, it isfar more important to classify a problem as either an HEIAL Ter0la L gl g 10 g i
initial value problem or a boundary value problem (rather than W ST BRI S il
classifying as hyperbolic, parabolic, elliptic), since many problems o i s
are mixtures of the three classifications. D e bt S .

imitial ".-.:lll.ll.'h. are given odf one “time slice,” and i1 is desired to advance the solution in time, compatin
-gaap - . A, T 1 FT F ;
SUCCEsSIVE rows of open dots in the direction shown by the armows, Botindary conditions at the |-.-,1::] wnﬁ
ughl_ edpges of each row () must alse be supplied, but only one row 4t g time nn|:.- one ...:.r a f'--.u
from Nu | R | pre 'f_“IJUE- TOWE fee ad ‘-5':' mamtamed in memary. In (b), boundary valses gre specified :m:uumi |;'1|.- e -.:ef
mer (:al eC peS a grid, and an ierative process is employed 1o find the values of all the internal peints (open ._-i;£|¢n

All grid points must be maintined in memory.
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Hold on asecond! Takealook at Figures 6.2 and 6.4 in your text. Isn't the boundary value problem just a special
case of aninitial value problem? Notice that the initial value problem setup has three of four boundaries defined,
while the boundary value problem simply has all four boundaries defined. So what's the big deal on differentiating
between the two techniques? Discuss with your neighbor.

|nitial Value Problems
Can the boundary conditions for an initial value problem be derivatives (and not just boundary values)?

If you claim that derivatives could be used, what kind of derivatives would they be: with respect to time or space?

Why are boundary conditions even necessary for an initial value problem? If you inspect the top figure on the
previous page of these notes, or ook at Figure 6.1 in the text, you'll see that the “initial values’ along the bottom
axes would naturally provide the “boundary values’ at time t=0. Hence, wouldn't solving the problem forward in
time naturally provide the boundaries for timest > 0? Can you think of a physical scenario in which defining the
boundary values for timest > 0 would be necessary?

How would you envision “marching your solution forward in time” for an initial value problem? i.e., What sort of
computational technique would you employ?
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For an initial value problem, the main concernisin the stability of the solution. Because we are propagating
forward in time, small inaccuracies at the beginning will be compounded as we compute forward in time. On the
other hand, a boundary value problem is more concerned with the efficiency of the code. Sincethisisastatic
problem, we're not propagating forward intime. Instead, we are solving alarge number of simultaneous algebraic
eguations — we can solve them by the matrix methods we've already learned, for example.

Boundary Value Problems
The finite difference method takes advantage of the grid setup for boundary value problems. We set up the grid as

xj:x0+jA j=0,1, ..., J

y, =y, +HA 1=0,1, ..., L
—- A —
For the elliptic problem,
2 2 —

(uj+1,l_2uj,l+uj-1,l)/A + (uj,l+1_2uj,l+uj,|-1)/A - pj,l l

or
_ _ _ 2 A

uj+1,| 2uj,l+uj-1,l + uj,|+1 2uj,l+uj,l-1 - A pj.l

or I
_ ) .
Uit Uy TU U -Au = A%p, I=)(L+1)+
B

This equation holds for the interior. For the boundary regions, i.e.,

j=0 or i=0, ..., L

j=J or i=J(L+1), ..., J(L+1)+L

=0 or i=0,L+1, ..., J(L+1)

|I=L or i=L,L+1+L, ..., J(L+1)+L .
the values of u or its derivative are given. In other words, thisis i {
essentially a matrix problem of the form Au=b. . Th sconddervavs o o e el g _“:-'lij“p_‘.i'i_ﬁ“:EEL“._:‘,‘_J'?S\L‘.*;ZL,.”!.’::I:::ZEE

b Recond denvabives &l ponl arg evaloated psing the connected points and aleo using “raghit-har

side™ boundary information. shown schematically as @
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A traveling wave

E )
B
E: y-component only y
B: z-component only Perfect
Copyright € 2004 Pearson Education, inc., publishing as Addson Weasley, / COndllCtO['

X = A: .
nodal plane of £
antinodal plane of B

A microwave oven

antinodal plane of E
nodal plane of B

Copyright £ 2004 Paarson Education, ing., publishing as Addison Washey,
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