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Partial Differential Equations I

The traditional categorization of PDEs is hyperbolic, parabolic, and elliptic, as described in your text.

2u/t2 = v2 2u/x2 hyperbolic wave equation (speed v)

u/t = /x (D u/x) parabolic diffusion equation (diffusion coefficient D)

2u/x2 + 2u/y2 = (x,y) elliptic Poisson equation (source )

The first two equations are examples of initial value (a.k.a. Cauchy) 
problems.  If you feed your code the initial conditions for u, then the 
equations will predict future values of u for all later times.  On the 
other hand, the third equation exemplifies a boundary value (or
static solution) problem.  Feed your code the values of u along the 
outer regions of a grid, then the equation provides you the values of 
u elsewhere in the grid.

The challenge for initial value and boundary value problems
is to find a way to integrate forward in time, or to integrate
spatially inwards, with an acceptable accuracy level.

Moreover, it is far more important to classify a problem as either an
initial value problem or a boundary value problem (rather than 
classifying as hyperbolic, parabolic, elliptic), since many problems
are mixtures of the three classifications.
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Partial Differential Equations I

Hold on a second!  Take a look at Figures 6.2 and 6.4 in your text.  Isn't the boundary value problem just a special 
case of an initial value problem?  Notice that the initial value problem setup has three of four boundaries defined, 
while the boundary value problem simply has all four boundaries defined.  So what's the big deal on differentiating 
between the two techniques?  Discuss with your neighbor.

Initial Value Problems
Can the boundary conditions for an initial value problem be derivatives (and not just boundary values)?  

If you claim that derivatives could be used, what kind of derivatives would they be: with respect to time or space?

Why are boundary conditions even necessary for an initial value problem?  If you inspect the top figure on the 
previous page of these notes, or look at Figure 6.1 in the text, you'll see that the “initial values” along the bottom 
axes would naturally provide the “boundary values” at time t=0.  Hence, wouldn't solving the problem forward in 
time naturally provide the boundaries for times t > 0?  Can you think of a physical scenario in which defining the 
boundary values for times t > 0 would be necessary?

How would you envision “marching your solution forward in time” for an initial value problem?  i.e., What sort of 
computational technique would you employ?
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Partial Differential Equations I

For an initial value problem, the main concern is in the stability of the solution.  Because we are propagating 
forward in time, small inaccuracies at the beginning will be compounded as we compute forward in time.  On the 
other hand, a boundary value problem is more concerned with the efficiency of the code.   Since this is a static 
problem, we're not propagating forward in time.  Instead, we are solving a large number of simultaneous algebraic 
equations – we can solve them by the matrix methods we've already learned, for example.

Boundary Value Problems
The finite difference method takes advantage of the grid setup for boundary value problems.  We set up the grid as
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This equation holds for the interior.  For the boundary regions, i.e.,
j=0  or  i=0, ..., L
j=J  or  i=J(L+1), ..., J(L+1)+L
l=0  or  i=0,L+1, ..., J(L+1)
l=L  or  i=L,L+1+L, ..., J(L+1)+L

the values of u or its derivative are given.  In other words, this is
essentially a matrix problem of the form Au=b.

PHYS 4840      Mathematical & Computational Physics II



4

Partial Differential Equations I
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