#### **Chapter 05: Interiors of Terrestrial Planets and Major Moons**



Earth is massive enough for the core to experience \_ and thus higher-than-average density.

Earth is also massive enough to have undergone \_

**Q:** What would the Earth's density profile look like as a function of radius if the density were perfectly uniform throughout?

g(r) = Force / mass(r) =

## In other words, the gravitational acceleration would be \_\_\_\_\_\_ with a slope of \_\_\_\_\_\_.

The slope is steepest in the inner core, implying that the inner core is \_\_\_\_\_.

The slope is ~flat for the mantle, implying that the mantle's density is

What is g(r) at the altitude of the International Space Station?



## Internal heat Smaller masses have less \_\_\_\_\_ and cool more rapidly because their larger ratio of \_\_\_\_\_ See also <u>Bergmann's Rule</u>

The amount of accretional heating can be estimated via the gravitational internal energy: as a mass grows through accretion, the infalling masses slam into the parent mass and thereby deliver kinetic energy.

On page 2, Dobson claims that the gravitational energy energy of a massive spherical object is \_\_\_\_\_\_ and that the constant of proportionality is \_\_\_\_\_. Let's derive this constant! 3/5 GM<sup>2</sup>/R is only an approximation for the accretional heating. This value is \_\_\_\_\_\_ limit since \_\_\_\_\_\_.

Another important source of heat for planetary interiors is radioactive decay. Relevant isotopes include <sup>235</sup>U, <sup>238</sup>U, <sup>232</sup>Th, and <sup>40</sup>K which have half lives of ~10<sup>9-10</sup> years. Interestingly, many of these isotopes derive from \_\_\_\_\_\_.

Finally, \_\_\_\_\_\_ forces can provide substantial internal heating, especially for \_\_\_\_\_\_

#### Gravitational tidal forces



Depending on the local topography, extreme tides can occur on Earth, e.g., 16.3m at the Bay of Fundy on the east coast of Canada.



The density profile of the Earth is assessed through seismology. P (primary) and S (secondary) waves trace the propagation of earthquakes, which can be generated through the interactions of tectonic plates as they move past and over/under each other.



The Yellowstone Hotspot: as the Earth' s lithosphere moves across a hotspot comprised of granitic and basaltic magma, volcanoes erupt occasionally along a path. The most recent eruption was 640,000 years at the present location of Yellowstone Nat'l Park.



## **The Yellowstone Hotspot**



# The Hawaii Hotspot: similar to the Yellowstone Caldera, the Big Island of Hawaii is only 0.7 Myr old (and still growing).

| NW            | 4                              |              | Volcanoes         | are progress         | ively older      | si si                                                |
|---------------|--------------------------------|--------------|-------------------|----------------------|------------------|------------------------------------------------------|
| N<br>Seamount | Ni'ihau Kaua'i<br>(5.6-4.9 Ma) |              | Oʻahu<br>(3.4 Ma) | Moloka'i<br>(1.8 Ma) | Maui<br>(1.3 Ma) | Hawaiʻi<br>(0.7–0 Ma) Mauna Loa<br>Kīlauea<br>Lōʻihi |
|               | Lithosphere                    | $\leftarrow$ | PAC               | IFIC PL              | ATE 🥞            |                                                      |
|               | Asthenosphere                  |              |                   |                      | Motion<br>drags  | an Hotspot                                           |
|               |                                |              | 26-1-22           | 12.2722              |                  | NOT TO SCALE                                         |

**Q**: The continent of Europe (on the Eurasian Plate) and the continent of North America (on the North American Plate) are moving apart from each other at 3 cm/yr. Estimate how long it has taken them to attain their current separation of 4500 km.



Do plate tectonics occur on other planets in the Solar System? Perhaps. An argument for the gargantuan size of Mons Olympus on Mars is that \_\_\_\_\_\_.

Further out in the Solar System, the various fissure-like features on Europa may indicate subduction of ice "plates", though it is unclear why some ice plates would be dense enough to sink.