
Chapter 10: Debris and the Formation of the Solar System

Radioactive elements decay with a	characteristic,
the time it takes for half of a sample	e to decay.
alpha decay produces an alpha part	cicle (essentially a
beta decay involves	
β- decay is the conversion of a	into a
β+ decay involves positron emission	or electron

To age date a meteorite, you would preferably use a radioactive isotope that has a very long half-life, e.g.,

⁴⁰K decays into ⁴⁰Ar with a half-life of 1.3 Gyr ²³⁸U decays into ²⁰⁶Pb with a half-life of 4.5 Gyr ⁸⁷Rb decays into ⁸⁷Sr with a half-life of 49.7 Gyr

Periodic Table of Elements

We typically encounter the ³⁹K and ⁴⁰Ar isotopes for potassium and argon, or 19p+20n and 18p+22n, respectively. How many protons and neutrons are in ⁴⁰K? What is necessary for ⁴⁰K to decay into ⁴⁰Ar?

We typically encounter the ⁸⁵Rb and ⁸⁸Sr isotopes for rubidium and strontium, or 37p+48n and 38p+50n, respectively. How many protons and neutrons are in ⁸⁷Rb? How many protons and neutrons are in ⁸⁷Sr? What is necessary for ⁸⁷Rb to decay into ⁸⁷Sr?

The chain of events is a bit more complicated for ²³⁸U to decay into ²⁰⁶Pb:

$$\frac{^{238}\text{U}}{^{4.468\times10^{9}}} \xrightarrow{^{234}\text{Th}} \xrightarrow{\beta^{-}} \xrightarrow{^{234}\text{mP}} \text{Pa} \left\{ \begin{array}{c} \frac{0.16\%}{^{-}} \xrightarrow{^{234}\text{Pa}} \text{Pa} \xrightarrow{\beta^{-}} \\ \frac{1.17 \text{ min}}{^{99.84\%} \ \beta^{-}} \end{array} \right\} \xrightarrow{^{234}\text{U}} \xrightarrow{\alpha} \xrightarrow{^{230}\text{Th}} \xrightarrow{\alpha} \xrightarrow{^{230}\text{Th}} \xrightarrow{\alpha} \xrightarrow{^{226}\text{Ra}} \xrightarrow{\alpha} \xrightarrow{^{222}\text{Rn}} \xrightarrow{^{236}\text{Rn}} \xrightarrow{^{236}\text$$

learning checkpoint: what kind of radioactive decay process is involved during the first step, when ²³⁸U decays to ²³⁴Th?

The equation for the number of particles as a function of time is

$$n(t) = n(t=0) 2^{-t/t}$$
 or $t = t$ half 2 322 lags of

 $t = t_half 3.322 log_{10}[n(t=0)/n(t)].$

Q: Suppose that in the Trappist-1 planetary system you encounter

an alien race that stupidly has decided to use third-lives instead of half-lives for expressing radioactive decay rates. What would be the equivalent mathematical expressions?

Review Examples 1 & 2 on Pages 3 & 4

Q: Suppose we have rock that initially had no ⁴⁰Ar but now has 40% as much ⁴⁰Ar as ⁴⁰K. How old is the rock?

You gotta love small-town local news: <u>meteorite</u> hits Wethersfield home in 1982.

In-class group work on radioactivity (see Chapter 10 Tutorials link)