Earth 2.0 : NASA's Search for Earth-size Planets

Outline

The Kepler mission Target Technique Results

Kepler

A Seárch for Habitable Planets

Outline

The Kepler mission Target Technique Results

Kepler

What fraction of stars in our galaxy harbor potentially habitable, Earth-size planets?

The "habitable zone"

HABTABIEZONE

Too Hot

Planet size: 1-2x Eadr

The "habitable zone"

Hotter Stars

Sunlike Stars

Cooler Stars

Estimating the \# of advanced civilizations in the Milky Way

Which factors do you think are important?

Where:

$\mathbf{N}=\#$ civilizations in Galaxy w/detectable electromagnetic emissions
$\mathrm{R}^{*}=$ Rate of star formation suitable for the development of intelligent life
$\mathbf{f}_{\mathrm{p}}=$ Fraction of those stars with planetary systems
$\mathbf{n}_{\mathbf{e}}=$ Number of planets, per solar system, with environment suitable for life
$\mathbf{f}_{\mathbf{i}}=$ Fraction of suitable planets on which life actually appears
$\mathbf{f}_{\mathrm{i}}=$ Fraction of life-bearing planets on which intelligent life emerges
$\mathbf{f}_{\mathbf{c}}=$ Fraction of civilizations that develop a technology that releases detectable signs of their existence into space
$\mathbf{L}=$ Length of time such civilizations release detectable signals into space

Kepler launch 06 March 2009

Cape Canaveral Delta II rocket
0.95 m mirror

Outline

The Kepler mission Target Technique Results

Kepler

A Seárch for Habitable Planets

Where does Kepler search?

The primary Kepler mission

Milky Way Galaxy

Image: NASA

Outline

The Kepler mission Target Technique Results

Kepler

A Seárch for Habitable Planets

Exoplanet Detection Methods

Radial velocity
Pulsar timing
Direct imaging
Gravitational microlensing
Transit
Polarimetry
Astrometry

Exoplanet Detection Methods

Radial velocity

Exoplanet Detection Methods

Radial velocity

Preferentially detects large, close-in planets

Only provides lower limit to mass

Exoplanet Detection Methods

Pulsar timing quite rare \& inhospitable 1991 blooper

Images: Alex Wolszczan (Penn St.)

Exoplanet Detection Methods

Direct imaging

Prefers infraredbright planets far from faint stars

How does Kepler search? Transit photometry

150,000 stars observed Planets may occult their parent star

The first recorded transit of Venus

\% CRABTRLE WATCHING THE TRANSTI OF VENUS A A D $\cdot 1639$

Image credit: Ford Madox Brown, mural at Manchester Town Hall

Transit Signature of a Multiple-Planet System

Flangets can be distinguished by:

* Different periads
* Different deptha
* Different durations

Image credit: NASA

How does Kepler search? Transit photometry

Kepler provides planetary "candidates" Ideally confirmed by another technique

10\% false positives:
Tightly bound or dim binary star companion Stellar pulsations Periodic instrumental glitches

Outline

The Kepler mission Target Technique Results

Kepler

A Seárch for Habitable Planets

Exoplanet Detection Methods

■ Exoplanets Discovered by Year (as of 2017-03-08)
1400

1200

1000

Image: wikipedia

New Kepler Planet Candidates As of June 2017

Kepler Habitable Zone Planets As of June 2017

Image: NASA

Kepler-62 System

22\% of Sun-like stars harbor Earth-size planets orbiting in their habitable zones (Peitigura atal. 2013)

Extrapolate the result to the entire Milky Way: 40 billion habitable Earth-size planets (petigura etal. 2013)

HABITABLEZONE

Current Potentially Habitable Exoplanets

Ranked in Order of Similarity to Earth

\#1	\#2	\#3	\#4	\#5	\#6
$\begin{gathered} \text { Kepler-62e } \\ 0.83 \end{gathered}$	cllese 667C c 0.82	Gliese 581 g : 0.82	Thu Cetie" 0.77	Glieve E6TCf 0.76	$\begin{gathered} \text { Kepler-2.2 b } \\ 0.75 \end{gathered}$
\#7	\#8	\#9	\#10	\#11	\#12
$\begin{gathered} \text { Glinge } 163 \mathrm{c} \\ 0.74 \end{gathered}$	$\begin{gathered} \mathrm{HD} 40 \mathrm{se7} \mathrm{~B}^{*} \\ 0.72 \end{gathered}$	$\begin{gathered} \text { Kepler }-61 \mathrm{~b} \\ 0.72 \end{gathered}$	$\begin{gathered} \text { Kepler-627 } \\ 0.67 \end{gathered}$	$\begin{gathered} \text { Glieve } 667 \mathrm{C} e \\ 0.60 \end{gathered}$	$\begin{gathered} \text { Cliese 581 d } \\ 0.53 \end{gathered}$

Where:
$\mathbf{N}=\#$ civilizations in Galaxy w/detectable electromagnetic emissions
$R^{*}=$ Rate of star formation suitable for the development of intelligent life
$\mathbf{f}_{\mathrm{p}}=$ Fraction of those stars with planetary systems
$\mathbf{n}_{\mathbf{e}}=$ Number of planets, per solar system, with environment suitable for life
$\mathbf{f}_{\mathbf{i}}=$ Fraction of suitable planets on which life actually appears
$\mathbf{f}_{\mathrm{i}}=$ Fraction of life-bearing planets on which intelligent life emerges
$\mathbf{f}_{\mathbf{c}}=$ Fraction of civilizations that develop a technology that releases detectable signs of their existence into space
$\mathbf{L}=$ Length of time such civilizations release detectable signals into space

The Drake Equation

N~10•1•0.2 ? ? ? ? ? ?

Where:
$\mathbf{N}=\#$ civilizations in Galaxy w/detectable electromagnetic emissions
$R^{*}=$ Rate of star formation suitable for the development of intelligent life
$\mathbf{f}_{\mathrm{p}}=$ Fraction of those stars with planetary systems
$\mathbf{n}_{\mathbf{e}}=$ Number of planets, per solar system, with environment suitable for life
$\mathbf{f}_{\mathbf{i}}=$ Fraction of suitable planets on which life actually appears
$\mathbf{f}_{\mathrm{i}}=$ Fraction of life-bearing planets on which intelligent life emerges
$\mathbf{f}_{\mathbf{c}}=$ Fraction of civilizations that develop a technology that releases detectable signs of their existence into space
$\mathbf{L}=$ Length of time such civilizations release detectable signals into space

The Drake Equation

Progressing from left to right, the equation is increasingly uncertain.

The equation is conceptual, something to start a conversation on how to approach a search for life.

Fermi Paradox: Where are they?

Exoplanets By the Numbers

As of April 2018: 4496 candidates; 3717 confirmed; 927 terrestrial
Galaxy Total: ~40 billion
22\% of Sun-like stars harbor Earth-size, habitable planets
Nearest: Proxima b at 4 lyr
Mass range: a few lunar masses to 30 Jupiter masses
Orbital periods: a few hours to thousands of years

