Do the following problems and be prepared to discuss them in class.

1. Explain briefly (1 sentence each) why:

a) small objects are less likely to have atmospheres than large objects;

b) objects near the Sun are less likely to have atmospheres than more distant objects;

c) Saturn receives $\sim 1\%$ as much sunlight per square meter as does Earth;

d) smooth surfaces are likely to be younger than heavily cratered surfaces;

e) the water in oceans under the icy crusts of our Solar System moons is likely to contain salts and other impurities.

2. Find the best match between object and description:

Object		Description
01	Pluto	boring blue weather
02	Io	approximate plane of the Solar System
03	Enceladus	rotates retrograde
04	Ceres	planet discovered using math and physics
05	Eris	lakes of liquid methane
06	Uranus	binary system with center of mass outside the larger object
07	Rosetta	Saturnian moon with tiger stripes and water geysers
08	Titan	asteroid belt dwarf planet
09	Venus	icy Trans-Neptunian object about the size of Pluto
10	Ecliptic	rover that's been on Mars ~ 14 years
11	Opportunity	orbits Neptune retrograde
12	Triton	many volcanoes
13	Olympus Mons	Jovian moon with a larger diameter than Mercury
14	Neptune	spacecraft that orbited 67P/Churyumov-Gerasimenko
15	Ganymede	largest volano in the Solar System

Table 1	Solar	Systom	matching
Table 1.	Solar	System	matching

3. The albedo of Iapetus is $\sim 60\%$; about 60% of the incident light is reflected back into space. What would you expect to be the temperature of the sunlit side of Iapetus?

4. The Galileo spacecraft orbited Jupiter over 1995–2003. It required about 500 W of power to operate the instruments and on-board systems.

a) How large a solar panel would be needed (in m^2) to generate this amount of power at Jupiter, assuming 100% of the solar flux could be converted into electricity?

b) Calculate the panel's temperature (in K) if the panel acted as a blackbody and was in thermal equilibrium with the solar radiation.