we'll start with some group work to finish ch 5, then start or ch 6.

CHARGE	Name	EM HW-75	
Two identical metal balls are suspended by insulating threads. Both balls have the same net charge. In this problem, do not assume the balls are point charges. a. Draw a separate free-body diagram for each ball. Label the forces to indicate: * the object exerting the force,	Ball 1 Ball 2 Bree-body diagram	m	
the object on which the force is extended to the type of force (gravitational, not etc.), and whether the force is a contact or a contact force. b. Suppose the charge on the second ball is reduced slightly, so that it is less than that on the first ball. Predict whether the angle that ball 1 makes with the vertical will be greater	rited, for ball 1	Fe	$\Theta_{ball 1} = \Theta_{ball 2}$ $F_{all 2} = \frac{kq_2q_1}{kq_2}$ $F_{all 2} = \frac{kq_2q_2}{kq_2}$
body diagram that you drew in part a change, describe how they change. c. Predict what will happen if the net charge on ball 2 is	each ball in this case compare to the correspondin? If the magnitudes or directions of any of the for	free-	induced polarization
reduced to zero. Make a sketch to illustrate your answer. Thtorials in Introductory Physics McDermott Shaffer & P.F.G. 11 Wash. EM Charge HW-76 2. Coulomb's law allows us to find the charges.	Ball 2 OPrentice First Editi	all, Inc. s, 2002	
a. Do you agree with this statement	out this situation: Tree on the charge in the middle due to the other charge ue to the +Q charge is positive, and the force due to to ance!."	e-Q 	
 Each of the following parts involves: charge + q in two different cases. In cases A and B shown at right two positive point charges + Q ea distance s away from a third position of the point charge + q. Is the net electric force on the +q in case A greater than, less than, to the net electric force on the +q in case B? Explain. 	charge		
b. In case C, two positive point chargare each a distance s away from a positive point charge +q. In case and distance s away from a fifth positic charges +q. The angle card distance s away from a fifth positic charge +q. (The angle a shown is same in both cases.) Is the net electric force on the +q in case C greater than, less than, to the net electric force on the +q. in case D? Explain.	third D, four 18 world 18 worl	Q	see solutions posted online

chapter 6				
[See zoom rerordings on course website for when I'll be gone next week! Lab 3 on Monday!]				
We toyed with a Gaussian surface and electric flux sim				
double charge -> double flux				
change sign of charge -> change sign of flux				
sarface flux=0 [habanero hypothesis]				
Killer Bee flux see slide 1 ch 6				
.: B area A bits of bees pass				
fewer bees pass				
• / → #				
killer bee flux a cosine angle between B and A				
BACOSO = BAA· \hat{n} = B· A = flux through top surface is is $\phi = EA \cos \theta = E \cdot A$				
<u> </u>				
top surface has area A, and A=An				
example Exlux through a sphere E(r) = kq r				
Eslux through a sphere $E(r) = \frac{kq}{r^2}$ $\phi = \int d\phi = \int E dA - \int E dA \cdot \hat{r} = \int E dA \cos \theta$				
$= \Gamma = I \Delta = F \Gamma I \Delta = F \Delta = E \pi^2$				
= SEdA = ESdA = EA = E4TTP = 4TTP = 9/6				

Gauss Law: \$ = genclosed (E)

imagine some bizarre geometry and ch. distribution

Ø = gencle_ math is easier!

example & flux through a Gaussian cylinder.

Tret =
$$\phi_{left} + \phi_{right} + \phi_{tube}$$

=
$$-E\pi R^2 + E\pi R^2 + 0 = 0$$
 which is What

Gauss' Law predicted

ch6 concept Q #1

$$\phi' = \epsilon' A' = kq 4\pi (ar)^3 = \phi$$

≯x

right face
$$JA = dAJ$$

$$\phi_{right} = \int \vec{E} \cdot J\vec{A} = \int 3.0 \times \vec{A} + 4.0 \cdot \vec{j} \cdot dAJ$$

$$= \int (3.0 \times dAJ \cdot \vec{A} + 4.0 \cdot dAJ \cdot \vec{A}) = \int (3.0 \times dAJ + 0) = 3.0 \cdot \vec{j} \times dA$$

$$= 3.0 \cdot 3.0 \cdot \vec{j} \cdot dA = 9.0 \cdot \vec{k} \cdot \vec{k} \cdot \vec{k} \cdot \vec{k} \cdot \vec{k} \cdot \vec{k}$$

$$\phi_{left} = -\frac{1}{3} \cdot \phi_{right} \quad \text{since } d\vec{k} = -dAJ \cdot \vec{k} \cdot \vec{k} \cdot \vec{k}$$

$$= \frac{12 \cdot Nm^2}{C}$$

$$\phi_{\text{front}} = \phi_{\text{back}} = 0$$