Do the following problems and be prepared to discuss them in class.

1. Cooling Time

Define a cooling time t_c by $t_c = -T/(dT/dt)$. Consider a 200 K cloud for which $n(H) = 10^8 \text{ m}^{-3}$, $n(e^-) = 10^5 \text{ m}^{-3}$, and $n(C^+) = 4 \cdot 10^4 \text{ m}^{-3}$. Suppose that cooling occurs solely by the excitation of transitions in C⁺ by collisions with electrons: $\Lambda_{e^-,C^+} = 8 \cdot 10^{-33} \frac{n(e^-)}{\text{m}^{-3}} \frac{n(C^+)}{\text{m}^{-3}} \sqrt{\frac{\text{K}}{T}} e^{-(92\text{K}/T)} \text{ J m}^{-3} \text{ s}^{-1}$ Show that the cooling time, t_c , is of order 10^4 years.

2. Cooling Rate

Show that $n(H_2) \sim 10^7 \text{ m}^{-3}$ is necessary in a cloud of density $n = 10^8 \text{ m}^{-3}$ at a temperature of 100 K to give a cooling rate due to H₂ equal to that due to C⁺ and e⁻, if $n(e^-) = n(C^+) = 10^4 \text{ m}^{-3}$. Assume that $\Lambda_{H_2} = 3 \cdot 10^{-33} \frac{n(H_2)}{\text{m}^{-3}} \text{ J m}^{-3} \text{ s}^{-1}$ and that the cooling due to C⁺ is still the equation provided in Problem 1.

3. Heating Rate

Define α as the recombination rate coefficient for $X^+ + e^- \rightarrow X + h\nu$. Also, define E as the excess energy released in the counterpart photoionization process.

a) Show that the heating rate due to photoionization of atom X is $\alpha n(e^{-})n(X^{+})E$.

b) Show that the heating due to C atoms in the cloud of Problem #1 is $1.3 \cdot 10^{-26}$ J m⁻³ s⁻¹. Use $\alpha = 10^{-17}$ m³ s⁻¹ and see your class notes for the typical value of E in this case.

c) At which temperature T is the heating and cooling due to C^+ approximately balanced for any cloud?

4. Heating and Cooling

Determine the fraction of hydrogen in molecular form, $f = 2n(H_2)/n$, to maintain a cloud temperature of 100 K by H₂ cooling in a cloud heated by photoelectric emission grains at a rate of 10^{-28} J m⁻³ s⁻¹. Hint: see class notes and Problem #2 above.

5. Reaction Rate Coefficients

The molecule AB is made in the following ways: $A+B\rightarrow AB+h\nu$ and $A+BC\rightarrow AB+C$ with respective rate coefficients of k_1 and k_2 . AB is lost in the reaction AB+D \rightarrow A+BD (rate coefficient k_3) and in photodissociation AB \rightarrow A+B (rate β). After reviewing Section 4.1 of the text, show that an expression for the equilibrium abundance of AB in terms of other abundances is $n(AB) = n(A)[k_1n(B) + k_2n(BC)]/[k_3n(D) + \beta].$

6. Steady State

Suppose that the chemistries of H_2 , H_2^+ , and H_3^+ are described by

$$\begin{aligned} H_2 + \text{cosmic ray} &\to H_2^+ + e^- & \xi = 10^{-17} \text{ s}^{-1} \\ H_2 + H_2^+ &\to H_3^+ + H & k_1 = 10^{-15} \text{ m}^3 \text{ s}^{-1} \\ H_3^+ + \text{CO} &\to \text{HCO}^+ + H_2 & k_2 = 10^{-15} \text{ m}^3 \text{ s}^{-1} \end{aligned}$$

If $n(CO) = 10^{-4}n(H_2)$ and $n(H_2) = 10^{10} \text{ m}^{-3}$, find the steady state densities of H_2^+ and H_3^+ . Hint: Section 4.1 of the text.

7. Steady State

For the chemistry of Problem #6,

a) Write down the differential equation that determines the time dependence of H_2^+ .

b) Show that $n(\mathrm{H}_2^+)$ approaches steady state on a timescale $[k_1n(\mathrm{H}_2)]^{-1}$.

c) If the typical lifetime of a cloud is 10^6 years, is steady state a good approximation for the abundance of H_2^+ ?

8. Emission and absorption: cooling and heating

a) Why isn't the absorption of a photon by an atom or molecule in an interstellar cloud necessarily a heating event? It deposits energy into the cloud, but what else must happen for it to heat the cloud?

b) Why isn't the emission of a photon by an atom or molecule in an interstellar cloud necessarily a cooling event?