Text 'PHYSJC' to 22333 to join polleverywhere session

A glider is on an inclined, frictionless track. The x-axis points downhill. At $t=0$ the glider is at $x=0$ and moving uphill.
After reaching the high point of its motion, it moves downhill and returns to $x=0$.
 Which of the following $v_{x}-t$ graphs (graphs of velocity vs. time) best matches the motion of the glider?

© 2012 Pearson Education, Inc.

Announcements

- Lab 0 today and tomorrow! Complete the pre-lab before you come to lab
- The bookstore should be restocked in lab manuals today or tomorrow. Or, pick up a copy of Lab 0 right now.
- Homework \#1 is due Friday!
- Check the list of polleverywhere respondants for your name!

Example Problem

You launch a water balloon vertically from the top of a tall building as shown. Neglect air resistance.
5. Find the initial velocity of the balloon.

$$
\begin{aligned}
& v_{x}=v_{0 x}+a_{x} t \\
& x=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2} \\
& v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right) \\
& x=x_{0}=\left(\frac{v_{0 x}+v_{x}}{2}\right) t
\end{aligned}
$$

Problem-Solving Strategy

1. Identify the Problem

- Picture of the problem
- Given information
- Problem to be solved
- General approach

2. Set up the Physics

- Diagram axes and define variables
- Target variables
- Relevant equations

3. Solve the Problem

- Construct specific equations
- Outline the solution
- Solve for target variables

4. Evaluate your Solution

- Units of solution correct?
- Insert numerical values
- Answer reasonable? Correct units?

Velocity and position by integration

- The acceleration of a car is not always constant.
- The motion may be integrated over many small time intervals to give

$$
v_{x}=v_{o x}+\int_{0}^{t} a_{x} d t \text { and } x=x_{0}+\int_{0}^{t} v_{x} d t .
$$

Total area under the x - t graph from t_{1} to t_{2}
$=$ Net change in x-velocity from t_{1} to t_{2}

- http://www.sciencemag.org/news/ 2016/01/math-whizzes-ancient-babylon-figured-out-forerunnercalculus

Ch 3.1-2: Position, Velocity and Acceleration

PHYS 1210 Prof. Jang-Condell

Goals for Chapter 3

- To use vectors to represent the position of a body
- To determine the velocity vector using the path of a body
- To investigate the acceleration vector of a body
- To describe the curved path of projectile
- To investigate circular motion
- To describe the velocity of a body as seen from different frames of reference

Goals for Chapter 3

- To use vectors to represent the position of a body
- To determine the velocity vector using the path of a body
- To investigate the acceleration vector of a body
- To describe the curved path of projectile
- To investigate circular motion
- To describe the velocity of a body as seen from different frames of reference

Position vector

- The position vector from the origin to point P has components x, y, and z.

Average velocity-Figure 3.2

- The average velocity between two points is the displacement divided by the time interval between the two points, and it has the same direction as the displacement.

Instantaneous velocity

- The instantaneous velocity is the instantaneous rate of change of position vector with respect to time.
- The components of the instantaneous velocity are v_{x} $=d x / d t, v_{y}=d y / d t$, and $v_{z}=$ $d z / d t$.
- The instantaneous velocity of a particle is always tangent to its path.

Average acceleration

- The average acceleration during a time interval Δt is defined as the velocity change during Δt divided by Δt.

(a)

(b)

(c)

Instantaneous acceleration

- The instantaneous acceleration is the instantaneous rate of change of the velocity with respect to time.
- Any particle following a curved path is accelerating, even if it has constant speed.
- The components of the instantaneous acceleration are
$a_{x}=d v_{x} / d t, a_{y}=d v_{y} / d t$, and a_{z}
$=d v_{z} / d t$.
(a) Acceleration: curved trajectory

(b) Acceleration: straight-line trajectory

Polleverywhere

A physicist is teaching her son to drive. Lesson 1 begins, "a car has three accelerators."

Identify these three accelerators.
Text your answers to 22333

Examples of Acceleration

- Coasting on a bicycle down a hill with constant slope
- acceleration is parallel
- Riding on a merry-go-round moving at constant rotation
- acceleration is perpendicular

Acceleration and Velocity

- The component of a parallel to v causes the speed to change.
- The component of a perpendicular to v causes the direction to change.

Text your answers to 22333

1. True or False: If an object's distance from the origin r does not change, its velocity must be zero.
2. True or False: If an object's speed v does not change, its acceleration must be zero.
3. The rate of change of an object's speed $d|v| / d t$ is the same as the magnitude of its acceleration $|d v / d t|$. Always, Never, or Sometimes?
4. True or False: The acceleration of an object moving at constant speed in a circular path is zero.

Direction of the acceleration vector

- The direction of the acceleration vector depends on whether the speed is constant, increasing, or decreasing, as shown in Figure 3.12.
(a) When speed is constant along a curved path ..

(b) When speed is increasing along a curved path ...

(c) When speed is decreasing along a curved path ...

Acceleration of a skier

- Conceptual Example 3.4 follows a skier moving on a ski-jump ramp.

Acceleration of a skier

- Conceptual Example 3.4 follows a skier moving on a ski-jump ramp.
- Figure 3.14(b) shows the direction of the skier's acceleration at various points.
(a)

Text your answer to 22333

The direction of the acceleration of an object moving at constant speed in a circular path is:
F. in the direction of its motion.
G.opposite the direction of its motion.
H.toward the center of its circular path.
I. away from the center of its circular path.

