## A ski jumper slides down a frictionless ramp as shown below. Draw the acceleration vector at points A-F.



## Announcements

- Written Homework #1 due NOW!
- Online homework #1 due 10pm
- Do pre-lab for Lab #1 for next week

# Ch 3.3-4: Projectile & Circular Motion

PHYS 1210 - Prof. Jang-Condell

## Goals for Chapter 3

- To use vectors to represent the position of a body
- To determine the velocity vector using the path of a body
- To investigate the acceleration vector of a body
- To describe the curved path of projectile
- To investigate circular motion
- To describe the velocity of a body as seen from different frames of reference

Copyright © 2012 Pearson Education Inc.

### Acceleration of a skier

• Conceptual Example 3.4 follows a skier moving on a ski-jump ramp.



Copyright © 2012 Pearson Education Inc.

### Acceleration of a skier

- Conceptual Example 3.4 follows a skier moving on a ski-jump ramp.
- Figure 3.14(b) shows the direction of the skier's acceleration at various points.



Copyright © 2012 Pearson Education Inc.

### Direction of the acceleration vector

• The direction of the acceleration vector depends on whether the speed is constant, increasing, or decreasing, as shown in Figure 3.12.

(a) When speed is constant along a curved path ...



(b) When speed is increasing along a curved path ...



(c) When speed is decreasing along a curved path ...



Copyright © 2012 Pearson Education Inc.

### Acceleration of a skier

- Conceptual Example 3.4 follows a skier moving on a ski-jump ramp.
- Figure 3.14(b) shows the direction of the skier's acceleration at various points.



Copyright © 2012 Pearson Education Inc.

## **Projectile motion—Figure 3.15**

- A projectile is any body given an initial velocity that then follows a path determined by the effects of gravity and air resistance.
- Begin by neglecting resistance and the curvature and rotation of the earth.
  - A projectile moves in a vertical plane that contains the initial velocity vector  $\vec{\boldsymbol{v}}_0$ .
  - Its trajectory depends only on  $\vec{v}_0$  and on the downward acceleration due to gravity.



Copyright © 2012 Pearson Education Inc.

## Equations of Motion

## The x and y motion are separable—Figure 3.16

- The red ball is dropped at the same time that the yellow ball is fired horizontally.
- The strobe marks equal time intervals.
- We can analyze projectile motion as horizontal motion with constant velocity and vertical motion with constant acceleration:  $a_x = 0$  and  $a_y = -g$ .



Copyright © 2012 Pearson Education Inc.

## The equations for projectile motion

- If we set  $x_0 = y_0 = 0$ , the equations describing projectile motion are shown at the right.
- The trajectory is a parabola.

$$x = \left(v_0 \cos \alpha_0\right) t$$

$$y = \left(v_0 \sin \alpha_0\right) t - \frac{1}{2}gt^2$$

$$v_x = v_0 \cos \alpha_0$$

$$v_y = v_0 \sin \alpha_0 - gt$$



Vertically, the projectile is in constant-acceleration motion in response to the earth's gravitational pull. Thus its vertical velocity *changes* by equal amounts during equal time intervals.

Horizontally, the projectile is in constant-velocity motion: Its horizontal acceleration is zero, so it moves equal *x*-distances in equal time intervals.

Copyright © 2012 Pearson Education Inc.

## Tranquilizing a Falling Monkey



## FOXIOUS BILL AMEND







A projectile is fired from a cannon at a 30-degree angle with the ground and an initial velocity of 100 m/sec. Assuming no air resistance and  $g=10\text{m/sec}^2$ , calculate the time it will spend in the air.















## Text 'PHYSJC' and your answer to 22333

The direction of the acceleration of an object moving at constant speed in a circular path is:

- F. in the direction of its motion.
- G. opposite the direction of its motion.
- H. toward the center of its circular path.
- I. away from the center of its circular path.

## Uniform Circular Motion vs. Projectile Motion

#### (a) Uniform circular motion



#### (b) Projectile motion

Velocity and acceleration are perpendicular only at the peak of the trajectory.

