Text 'PHYSJC' and your answer to 22333

You have a slingshot that fires balls at a constant initial speed. At what angle of firing will you be able to maximize the range of the slingshot? Assume any targets are the same level as the slingshot.

- A. 0-20 degrees from horizontal.
- B. 20-40 degrees
- C. 40-60 degrees
- D. 60-90 degrees
- E. None of the above

Ch 3.4-5: Projectile Motion and Relative Velocity

PHYS 1210 - Prof. Jang-Condell

Goals for Chapter 3

- To use vectors to represent the position of a body
- To determine the velocity vector using the path of a body
- To investigate the acceleration vector of a body
- To describe the curved path of projectile
- To investigate circular motion
- To describe the velocity of a body as seen from different frames of reference

Copyright $\ensuremath{\mathbb{C}}$ 2012 Pearson Education Inc.

Uniform Circular Motion vs. Projectile Motion

(a) Uniform circular motion

(b) Projectile motion

Velocity and acceleration are perpendicular only at the peak of the trajectory.

Uniform circular motion—Figure 3.27

• For *uniform circular motion*, the speed is constant and the acceleration is perpendicular to the velocity.

(b) When speed is increasing along a curved path ...

(c) When speed is decreasing along a curved path ...

Acceleration for uniform circular motion

- For uniform circular motion, the instantaneous acceleration always points toward the center of the circle and is called the *centripetal acceleration*.
- The magnitude of the acceleration is $a_{rad} = v^2/R$.
- The *period T* is the time for one revolution, and $a_{\rm rad} = 4\pi^2 R/T^2$.

(a) A particle moves a distance Δs at constant speed along a circular path.

(c) The instantaneous acceleration

Copyright © 2012 Pearson Education Inc.

Text 'PHYSJC' and your answers to 22333

Two balls with the **same speed** contact different
semicircular guides. Which
accelerates the most in the

accelerates the most in the curve?

A

C: a tie

Points I and 2 are different distances from the center of a rotating disk. Which accelerates the most?

Enter your answer for each scenario

Non-uniform circular motion

© 2012 Pearson Education, Inc.

Which of the following are true?

K. The magnitude of the radial acceleration (a_{rad}) stays constant.

L. The magnitude of the tangental acceleration (a_{tan}) stays constant.

M. The magnitude of the total acceleration (a_{tot}) stays constant. N. None of the above.

Text your answer to 22333

Non-uniform circular motion

Nonuniform circular motion—Figure 3.30

- If the speed varies, the motion is nonuniform circular motion.
- The radial acceleration component is still $= v^2/R$, but there is also a tangential acceleration component a_{tan} that parallel to the instantaneous velocity.

Speed fastest, a_{rad} maximum, a_{tan} zero

Relative velocity—Figures 3.31 and 3.32

- The velocity of a moving body seen by a particular observer is called the velocity *relative* to that observer, or simply the *relative velocity*.
- A frame of reference is a coordinate system plus a time scale.

Copyright © 2012 Pearson Education Inc.

Relative velocity in one dimension

- If point P is moving relative to reference frame A, we denote the velocity of *P* relative to frame *A* as $v_{P/A}$.
- If P is moving relative to frame B and frame B is moving relative to frame A, then the x-velocity of P relative to frame A is $v_{P/A-x} = v_{P/B-x}$ (b) $+ v_{B/A-x}$.

P (passenger) B (train)

A (cyclist)

(a)

Copyright © 2012 Pearson Education Inc.

A cannon shoots objects at an initial horizontal velocity of 50 mph. It shoots a ball out the back of car traveling 50 mph. To a stationary observer, what will the trajectory of the ball look like?

https://www.youtube.com/watch?v=BLulll8nhzc

Relative velocity in two or three dimensions

- We extend relative velocity to two or three dimensions by using vector addition to combine velocities.
- In Figure 3.34, a passenger's motion is viewed in the frame of the train and the cyclist.

Copyright © 2012 Pearson Education Inc.