A block of mass *m* is at rest on a sloped surface, as shown below. What is the magnitude of the friction force?

Text 'PHYSJC' and your answer to 22333

Chapter 5.3 Frictional Forces

PHYS1210 - Prof. Jang-Condell

Goals for Chapter 5

- To use Newton's first law for bodies in equilibrium
- To use Newton's second law for accelerating bodies
- To study the types of friction and fluid resistance
- To solve problems involving circular motion

Copyright © 2012 Pearson Education Inc.

Acceleration down a hill

• What is the acceleration of a toboggan sliding down a friction-free slope? Follow Example 5.10.

(a) The situation

Two common free-body diagram errors

- The normal force must be perpendicular to the surface.
- There is no " $m\vec{a}$ force."
- See Figure 5.13.

(a) Correct free-body diagram for the sled

(b) Incorrect free-body diagram for the sled

Copyright © 2012 Pearson Education Inc.

Frictional forces

• When a body rests or slides on a surface, the *friction force* is parallel to the surface.

• Friction between two surfaces arises from interactions between molecules on the surfaces.

The friction and normal forces are really components of a single contact force.

On a microscopic level, even smooth surfaces are rough; they tend to catch and cling.

You pull on a block with 5 N of force, but friction keeps it at rest. You try again with 10 N of force, but it still won't budge. What is the magnitude of **static** friction in each case?

Text 'V' and your answers to 22333.

Static friction followed by kinetic friction

• Before the box slides, static friction acts. But once it starts to slide, kinetic friction acts.

Copyright © 2012 Pearson Education Inc.

Friction in horizontal motion

- Before the crate moves, static friction acts on it. After it starts to move, kinetic friction acts.
- Static friction only has its maximum value just before the box "breaks loose" and starts to slide.
 - (a) Pulling a crate
- (b) Free-body diagram for crate just before it starts to move
- (c) Free-body diagram for crate moving at constant speed

Copyright © 2012 Pearson Education Inc.

You manage to get the block moving, and it slides with constant speed while you pull on it with 9 N of force. What is the magnitude of **kinetic** friction?

- F. less than 9 N
- G. 9 N
- H. greater than 9 N
- I. Not enough information

Text your answer to 22333.

Kinetic and static friction

- The magnitude of friction depends on the normal force.
- Kinetic friction acts when a body slides over a surface.
- The kinetic friction force is $f_k = \mu_k n$.
- Static friction acts when there is no relative motion between bodies.
- The *static friction force* can vary between zero and its maximum value: $f_s \le \mu_s n$.

Copyright © 2012 Pearson Education Inc.

What are the units for μ_k and μ_s ?

K. N

L. m/s^2

M. radians

N. None of the above

Text your answer to 22333

Now with Friction!

What is the maximum angle α before the box starts sliding down?

A heavy truck and a small car are traveling at speed v on the same road. They both slam on their brakes and skid to a halt. Assume that the coefficient of friction is the same. Which of the following is true?

- Q. They both come to a stop in the same distance and same time.
- R. The car stops in the least distance and in the least time.
- S. The truck stops in the least distance and in the least time.
- T. The truck stops in less distance, but they both stop in the same time.
- U. The car stops in less distance, but they both stop in the same time.

Fluid resistance

Small objects, low speed:

$$f = k v$$

• Large objects, high speed:

$$f = D v^2$$

Fluid resistance, small objects, low speed

Terminal speed:

$$v_t = mg/k$$

Equation of motion:

$$v_y = v_t [1-e^{-kt/m}]$$

Fluid resistance, large objects, high speed

(a) Free-body diagrams for falling with air drag

• Terminal speed:

$$v_t = \sqrt{mg/D}$$

Before terminal speed: Object accelerating, drag force less than weight.

At terminal speed v_t : Object in equilibrium, drag force equals weight.

© 2012 Pearson Education, Inc.

Fluid resistance

	Small objects, low speed:	Large objects, high speed:
Force	f = k v	$f = D v^2$
Terminal speed	$v_t = mg/k$	$v_t = \sqrt{mg/D}$

Fluid resistance, high speed

Trajectory of a baseball