Q5.11

A sled moves on essentially frictionless ice. It is attached by a rope to a vertical post set in the ice. Once given a push, the sled moves around the post at constant speed in a circle of radius R.

If the rope breaks,
A. the sled will keep moving in a circle.
B. the sled will move on a curved path, but not a circle.
C. the sled will follow a curved path for a while, then move in a straight line.
D. the sled will move in a straight line.

Text 'PHYSJC' and your answer to 22333

Exam \#I

- Thursday, March 3. 5-7pm. CR 306
- Chapters I-5
- Closed notes, closed book. I page of equations is allowed.
- Calculators are allowed.

Chapter 5.4 Circular Motion PHYSI2IO - Prof. Jang-Condell

Goals for Chapter 5

- To use Newton's first law for bodies in equilibrium
- To use Newton's second law for accelerating bodies
- To study the types of friction and fluid resistance
- To solve problems involving circular motion

Fluid resistance

- Small objects, low speed:

$$
f=k v
$$

- Large objects, high speed:

$$
f=D v^{2}
$$

Fluid resistance, small objects, low speed

- Terminal speed:

$$
v_{t}=m g / k
$$

- Equation of motion:

$$
v_{y}=v_{t}\left[1-e^{-k t / m}\right]
$$

Fluid resistance, large objects, high speed

(a) Free-body diagrams for falling with air drag

Before terminal
speed: Object
accelerating, drag
force less than
weight.
(c) 2012 Pearson Education, Inc.

- Friction force

$$
f=D v^{2}
$$

- Terminal speed:

$$
v_{t}=\sqrt{m g / D}
$$

Fluid resistance

	Small objects, low speed:	Large objects, high speed:
Force	$f=k v$	$f=D v^{2}$
Terminal speed	$v_{t}=m g / k$	$v_{t}=\sqrt{m g / D}$

Fluid resistance, $f=D v^{2}$

Trajectory of a baseball

Circular Motion

Dynamics of circular motion

- If a particle is in uniform circular motion, both its acceleration and the net force on it are directed toward the center of the circle.
- The net force on the particle is $F_{\text {net }}=m v^{2} / R$.

What if the string breaks?

- If the string breaks, no net force acts on the ball, so it obeys Newton's first law and moves in a straight line.

Avoid using "centrifugal force"

- Figure (a) shows the correct free-body diagram for a body in uniform circular motion.
- Figure (b) shows a common error.
- In an inertial frame of reference, there is no such thing as "centrifugal force."
(a) Correct free-body diagram

If you include the acceleration, draw it to one side of the body to show that it's not a force.
(b) Incorrect free-body diagram

The quantity $m v^{2} / R$ is not a force-it doesn't belong in a free-body diagram.

Q5.12

A pendulum bob of mass m is attached to the ceiling by a thin wire of length L. The bob moves at constant speed in a horizontal circle of radius R, with the wire making a constant angle β with the vertical. The tension in the wire
F. is greater than $m g$.
G. is equal to $m g$.

H. is less than $m g$.
I. is any of the above, depending on the bob's speed v.

When a car goes around a curve, what keeps it on the road?

A car rounds a banked curve

- At what angle should a curve be banked so a car can make the turn even with no friction?
(a) Car rounding banked curve

Uniform motion in a vertical circle

- A person on a Ferris wheel moves in a vertical circle.
- Follow Example 5.23.
(a) Sketch of two positions

Vertical Circular

Motion

How fast do I need to swing a bucket around so that objects do not fall out of it?

The fundamental forces of nature

- According to current understanding, all forces are expressions of four distinct fundamental forces:
- gravitational interactions
- electromagnetic interactions
- the strong interaction
- the weak interaction

