Survey http://goo.gl/rrjhDy

Ch 7.4-5: Force \& Potential Energy
 PHYS I2IO - Prof. Jang-Condell

Goals for Chapter 7

- To use gravitational potential energy in vertical motion
- To use elastic potential energy for a body attached to a spring
- To solve problems involving conservative and nonconservative forces
- To determine the properties of a conservative force from the corresponding potential-energy function
- To use energy diagrams for conservative forces

Conservative and nonconservative forces

- A conservative force allows conversion between kinetic and potential energy. Gravity and the spring force are conservative.
- The work done between two points by any conservative force
a) can be expressed in terms of a potential energy function.
b) is reversible.
c) is independent of the path between the two points.
d) is zero if the starting and ending points are the same.
- A force (such as friction) that is not conservative is called a nonconservative force, or a dissipative force.

Energy Conservation

Example

The spring has $\mathrm{k}=10^{4} \mathrm{~N} / \mathrm{m}$ and is compressed by 2 cm initially.

The coefficient of kinetic friction between the block and the surface is $\mu_{\mathrm{k}}=0.2$.

When the spring is released, what distance does the block travel before coming to a stop?

Force and

 Potential Energy

 Potential Energy}

(b) Gravitational potential energy and force as functions of y

(a) Spring potential energy and force as functions of x

Potential energy is
a minimum at $x=0$.
।
(c) 2012 Pearson Education, Inc.

force pushes body
toward $x=0$. For $x>0, F_{x}<0 ;$
force pushes body toward $x=0$.

For $x<0, F_{x}>0$;
.

Energy diagrams

- An energy diagram is a graph that shows both the potential-energy function $U(x)$ and the total mechanical energy E.
- Figure 7.23 illustrates the energy diagram for a glider attached to a spring on an air track.
(a)

(b)

On the graph, the limits of motion are the points where the U curve intersects the horizontal line representing total mechanical energy E.

Force and a graph of its potential-energy function

- Figure 7.24 below helps relate a force to a graph of its corresponding potential-energy function.

Unstable equilibrium

The graph shows the potential energy U for a particle that moves $\quad U$ along the x-axis.

The particle is initially at $x=d$ and moves in the negative x direction. At which of the labeled x-coordinates does the particle have the greatest speed?

A. at $x=a$
B. at $x=b$
C. at $x=c$
D. at $x=d$
E. more than one of the above

The graph shows the potential energy U for a particle that moves U along the x-axis. At which of the labeled x-coordinates is there zero force on the particle?
F. at $x=a$ and $x=c$
G. at $x=b$ only

H. at $x=d$ only
I. at $x=b$ and d
J. misleading question-there is a force at all values of x

Force and potential energy in two dimensions

- In two dimensions, the components of a conservative force can be obtained from its potential energy function using

$$
F_{x}=-\partial U / d x \text { and } F_{y}=-\partial U / d y
$$

- In general:

$$
\vec{F}=-\nabla U
$$

