Loosen a bolt

- Which of the three equal-magnitude forces in the figure is most likely to loosen the bolt?
- A. $\boldsymbol{F}_{\mathrm{a}}$
- B. $\boldsymbol{F}_{\mathrm{b}}$
- C. $\boldsymbol{F}_{\mathrm{c}}$
- D. Not enough information to decide

Exam \#2

- April 7,5-7pm
- CR 214 (Wednesday Labs) \& CR 222 (Thursday Labs)
- Chapters 6-9
- Closed book, closed notes. One page single-sided equation sheet allowed.

Ch IO.I-3 Torque PHYS I2IO -- Prof. Jang-Condell

Goals for Chapter 10

- To learn what is meant by torque
- To see how torque affects rotational motion
- To analyze the motion of a body that rotates as it moves through space
- To use work and power to solve problems for rotating bodies
- To study angular momentum and how it changes with time
- To learn why a gyroscope precesses

Torque

When $F \perp l$, then
 $$
\tau=F l
$$

Torque

Three ways to calculate torque:

Torque

You are using a wrench and trying to loosen a rusty nut. Which of the arrangements shown is most effective in loosening the nut? List in order of descending efficiency the following arrangements:

Torque as a vector

- Torque can be expressed as a vector using the vector product.
- Figure 10.4 at the right shows how to find the direction of torque using a right hand rule.

Newton's Second Law

$\sum \overrightarrow{\boldsymbol{\tau}}=I \overrightarrow{\boldsymbol{a}}$

Linear vs. Rotational Motion

Linear	Rotational
r	θ
v	ω
a	α
m	I
$K=(1 / 2) m v^{2}$	$K=(1 / 2) I \omega^{2}$
$\sum F=m a$	$\sum \tau=I \alpha$

Rolling without slipping
 $v_{\mathrm{cm}}=R \omega$

Rotation around center of mass:

Translation of center of mass:
velocity $\overrightarrow{\boldsymbol{v}}_{\mathrm{cm}}$

for rolling without slipping,

$$
\text { speed at rim }=v_{\mathrm{cm}}
$$

Combined motion

Wheel is instantaneously at rest where it contacts the ground.
(f) Solid cylinder

$$
I=\frac{1}{2} M R^{2}
$$

(g) Thin-walled hollow cylinder

$$
I=M R^{2}
$$

(h) Solid sphere

$$
I=\frac{2}{5} M R^{2}
$$

Ramp Race

Solid cylinder: $\mathrm{I}=(\mathrm{I} / 2) \mathrm{MR}^{2}$ Hollow cylinder: $1=$ MR 2 Solid sphere: $\mathrm{I}=(2 / 5) \mathrm{MR}^{2}$

You roll a solid cylinder, a hollow cylinder, and a solid sphere down a ramp. The have equal mass and radii. Which has the greatest total kinetic energy at the bottom of the ramp?
F. Solid cylinder
G. Hollow cylinder
H. Sphere
I. All have the same kinetic energy
J. Need more information

Ramp Race

Solid cylinder (SC): I = (1/2)MR ${ }^{2}$ Hollow cylinder (HC): $\mathrm{I}=\mathrm{MR}^{2}$ Solid sphere (SS): I = (2/5)MR²

You roll a solid cylinder, a hollow cylinder, and a solid sphere down a ramp. The have equal mass and radii. In what order will the objects reach the bottom of the ramp?
I. SC, HC, SS
2. SC, SS, HC
3. $\mathrm{HC}, \mathrm{SC}, \mathrm{SS}$
4. $\mathrm{HC}, \mathrm{SS}, \mathrm{SC}$
5. SS, SC, HC
6. SS, HC, SC
7. Two-way tie
8. Three-way tie

A solid disk and a ring roll down an incline. The ring is slower than the disk if
K. $m_{\text {ring }}=m_{\text {disk }}$, where m is the mass.
L. $r_{\text {ring }}=r_{\text {disk }}$, where r is the radius.
M. $m_{\text {ring }}=m_{\text {disk }}$ and $r_{\text {ring }}=r_{\text {disk }}$.

N . The ring is always slower regardless of the relative values of m and r.

A glider of mass m_{1} on a frictionless horizontal track is connected to an object of mass m_{2} by a massless string. The glider accelerates to the right, the object accelerates downward, and the string rotates the pulley. What is the relationship among T_{1} (the tension in the horizontal part of the string), T_{2} (the tension in the vertical part of the string), and the weight $m_{2} g$ of the object?
Q. $m_{2} g=T_{2}=T_{1}$
R. $m_{2} g>T_{2}=T_{1}$
S. $m_{2} g>T_{2}>T_{1}$
T. $m_{2} g=T_{2}>T_{1}$

m_{2}
U. none of the above

