A glider of mass m_{1} on a frictionless horizontal track is connected to an object of mass m_{2} by a massless string. The glider accelerates to the right, the object accelerates downward, and the string rotates the pulley. What is the relationship among T_{1} (the tension in the horizontal part of the string), T_{2} (the tension in the vertical part of the string), and the weight $m_{2} g$ of the object?
A. $m_{2} g=T_{2}=T_{1}$
B. $m_{2} g>T_{2}=T_{1}$
C. $m_{2} g>T_{2}>T_{1}$
D. $m_{2} g=T_{2}>T_{1}$
E. none of the above

© 2012 Pearson Education, Inc.

Exam \#2

- April 7,5-7pm
- CR 214 (Wed Labs) \& CR 222 (Thu Labs)
- Chapters 6-9
- One page single-sided equation sheet allowed.
- Review session:Wed,April 6 5-7pm, Enzi 195

Ch I0.3-4 Rotational Motion PHYS I2IO -- Prof. Jang-Condell

Goals for Chapter 10

- To learn what is meant by torque
- To see how torque affects rotational motion
- To analyze the motion of a body that rotates as it moves through space
- To use work and power to solve problems for rotating bodies
- To study angular momentum and how it changes with time
- To learn why a gyroscope precesses

Linear vs. Rotational Motion

	Linear	Rotational	relation
position	\boldsymbol{r}	$\boldsymbol{\theta}$	$\boldsymbol{\theta}=\boldsymbol{s} / R$
velocity	\boldsymbol{v}	$\boldsymbol{\omega}$	$\boldsymbol{\omega}=\boldsymbol{v} / R$
acceleration	\boldsymbol{a}	$\boldsymbol{\alpha}$	$\boldsymbol{\alpha}=\boldsymbol{a} / R$
mass	m	I	$I=\sum m_{i} R_{i}^{2}$ $=\int R^{2} d m$

Linear vs. Rotational Motion

	Linear	Rotational	relation
force	$\sum \boldsymbol{F}=m \boldsymbol{a}$	$\sum \boldsymbol{\tau}=I \boldsymbol{\alpha}$	$\boldsymbol{\tau}=\boldsymbol{r} \times \boldsymbol{F}$
momentum	$\boldsymbol{p}=m \boldsymbol{v}$	$\boldsymbol{L}=I \boldsymbol{\omega}$	$\boldsymbol{L}=\boldsymbol{r} \times \boldsymbol{p}$
kinetic energy	$K=(1 / 2) m v^{2}$	$K=(1 / 2) I \omega^{2}$	
work	$W=\int \boldsymbol{F} \cdot d \boldsymbol{l}$	$W=\int \boldsymbol{\tau} \cdot d \boldsymbol{\theta}$	

What is the angular acceleration of the pulley?
 What is the acceleration of the total system?

The two weights pictured below are attached to a frictionless, massless pulley of radius 10 cm . What is the angular acceleration on the pulley?

Now suppose that the pulley has some moment of inertia I. What is the linear acceleration of the weights?

Rigid body rotation about a moving axis

- The motion of a rigid body is a combination of translational motion of the center of mass and rotation about the center of mass (see Figure 10.11 at the right).
- The kinetic energy of a rotating and translating rigid body is
$K=1 / 2 M v_{\mathrm{cm}}{ }^{2}+1 / 2 I_{\mathrm{cm}} \omega^{2}$.

This baton toss can be represented as a combination of ...

Rolling without slipping
 $v_{\mathrm{cm}}=R \omega$

Rotation around center of mass:

Translation of center of mass: velocity $\overrightarrow{\boldsymbol{v}}_{\mathrm{cm}}$

for rolling without slipping,

$$
\text { speed at rim }=v_{\mathrm{cm}}
$$

Combined motion

Wheel is instantaneously at rest where it contacts the ground.

A solid bowling ball rolls down a ramp.

Which of the following forces exerts a torque on the bowling ball about its center?
F. the weight of the ball
G. the normal force exerted by the ramp
H. the friction force exerted by the ramp
I. more than one of the above
J. The answer depends on whether the ball rolls without slipping.

Acceleration of a rolling sphere

The ramp race

A solid disk and a ring roll down an incline. The ring is slower than the disk if
K. $m_{\text {ring }}=m_{\text {disk }}$, where m is the mass.
L. $r_{\text {ring }}=r_{\text {disk }}$, where r is the radius.
M. $m_{\text {ring }}=m_{\text {disk }}$ and $r_{\text {ring }}=r_{\text {disk }}$.

N . The ring is always slower regardless of the relative values of m and r.

A lightweight string is wrapped several times around the rim of a small disk. If the free end of the string is held in place and the disk is released from rest, the string unwinds and the disk descends. How does the tension in the string (T) compare to the weight of the disk (w)?
Q. $T=w$
R. $T>w$
S. $T<w$
T. not enough information given to decide

- What is the speed of the yo-yo after it has dropped a height h ?
- What is the acceleration?

Work and Power

$$
W=\int \boldsymbol{\tau} \cdot d \boldsymbol{\theta}
$$

$$
P=\tau \cdot \omega
$$

Power

You are out riding your bicycle, and find that you are applying a constant force of 50 N while pedaling at a constant rate of I. 5 revolutions per second. The length of the crank is 160 mm. How much power are you applying?

Text your answer to 22333

Angular momentum

$$
\boldsymbol{L}=\boldsymbol{r} \times p
$$

$$
L=I \omega
$$

Angular momentum

- The angular momentum of a rigid body rotating about a symmetry axis is parallel to the angular velocity and is given by $\overrightarrow{\boldsymbol{L}}=I \vec{\omega}$. (See Figures 10.26 and 10.27 below).
- For any system of particles $\Sigma \vec{\tau}=d \overrightarrow{\mathbf{L}} / d t$.
- For a rigid body rotating about the z-axis $\Sigma \tau_{z}=I \alpha_{z}$.
-

Angular Momentum Conservation

Conservation of angular momentum

- When the net external torque acting on a system is zero, the total angular momentum of the system is constant (conserved).

BEFORE

AFTER

Demo I

