The Moon does not fall to Earth because

I. It is in Earth's gravitational field.
2. The net force on it is zero.
3. It is beyond the main pull of Earth's gravity.
4. It is being pulled by the Sun and planets as well as by Earth.
5. All of the above.
6. None of the above.

Announcements

- Next week's Lab is not in the lab manual. Pick up a packet during lab this week or download it from the course website
- No office hours on Thursday I-3pm

Bernoulli's Equation

$$
\begin{gathered}
p_{1}+\rho g y_{1}+1 / 2 \rho v_{1}^{2} \\
= \\
p_{2}+\rho g y_{2}+1 / 2 \rho v_{2}^{2}
\end{gathered}
$$

Ch I3.I-3 Gravitation

PHYS I2IO - Prof. Jang-Condell

Friday, April 15, 16

Goals for Chapter 13

- To calculate the gravitational forces that bodies exert on each other
- To relate weight to the gravitational force
- To use the generalized expression for gravitational potential energy
- To study the characteristics of circular orbits
- To investigate the laws governing planetary motion
- To look at the characteristics of black holes

Newton's Law of Gravitation

Gravitation and spherically symmetric bodies

- The gravitational interaction of bodies having spherically symmetric mass distributions is the same as if all their mass were concentrated at their centers. (See Figure 13.2 at the right.)
(a) The gravitational
force between two
spherically symmetric
masses m_{1} and $m_{2} \ldots$

(b) ... is the same as if we concentrated all the mass of each sphere at the sphere's center.

Interior of the earth

- The earth is approximately spherically symmetric, but it is not uniform throughout its volume, as shown in Figure 13.9 at the right.

Q14.1
The mass of the Moon is $1 / 81$ of the mass of the Earth.
Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is
A. $81^{2}=6561$ times greater .
B. 81 times greater.
C. equally strong.
D. $1 / 81$ as great.
E. $(1 / 81)^{2}=1 / 6561$ as great.

Some gravitational calculations

- Example 13.3 illustrates the superposition of forces, meaning that gravitational forces combine vectorially. (See Figure 13.5 below.)

Weight

The weight of a body is the total gravitational force exerted on it by all other bodies in the universe.

At the surface of the Earth, the gravitational force of the Earth dominates. So a body's weight is

$$
w=G m_{\mathrm{E}} m / R_{\mathrm{E}}^{2}
$$

The acceleration due to gravity at the earth's surface is

$$
g=G m_{\mathrm{E}} / R_{\mathrm{E}}^{2}
$$

Suppose the Sun were suddenly replaced with a black hole of the same mass as the Sun. What effect would this have on the Earth's orbit?

I. The size of the orbit would decrease and the orbital period would increase.
2. The size of the orbit would decrease and the orbital period would decrease.
3. The size of the orbit would increase and the orbital period would decrease.
4. The size of the orbit would increase and the orbital period would increase.
5. The Earth would fall into the black hole.
6. None of the above.

Weight

- The weight of a body decreases with its distance from the earth's center, as shown in Figure 13.8 below.

Gravity is a

conservative force

Gravitational Potential

 Energy

- $M=$ mass of planet
- $m=$ mass of particle
- $r=$ distance between

Gravitational potential energy depends on distance

- The gravitational potential energy of the earth-astronaut system increases (becomes less negative) as the astronaut moves away from the earth, as shown in Figure 13.11 at the right.

From the earth to the moon

- To escape from the earth, an object must have the escape speed.
- Follow Example 13.5 using Figure 13.12 below.
(a)

(b)

Escape speed

Circular satellite orbits

- For a circular orbit, the speed of a satellite is just right to keep its distance from the center of the earth constant.
- A satellite is constantly falling around the earth. Astronauts inside the satellite in orbit are in a state of apparent weightlessness because they are falling with the satellite.

The satellite is in a circular orbit: Its acceleration $\overrightarrow{\boldsymbol{a}}$ is always perpendicular to its velocity $\overrightarrow{\boldsymbol{v}}$, so its speed v is constant.

Circular Orbits

$$
v_{c i r c}=\left(\frac{G M}{r}\right)^{1 / 2}
$$

The motion of satellites

- The trajectory of a projectile fired from A toward B depends on its initial speed. If it is fired fast enough, it goes into a closed elliptical orbit (trajectories 3, 4, and 5 in Figure 13.14 below).

A projectile is launched from A toward B.
Trajectories (1) through
(7) show the effect of
increasing initial speed.

