Let's Get Messy!

Using data to answer important problems in major and non-major astronomy courses

What techniques or teaching strategies did you notice in Jessica's Syllabi?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

The Course: Astro 101

- 30 non-major students
- Designed to fulfill science credit
- Main course goal: Students will develop a better understanding of how astronomy research is done and how scientific ideas are tested (while also practicing some math skills)
- Challenges: wide range of student ability and motivation, coupled with a large range of topics to cover. No access to lab equipment as during Fall of 2020

Using data and incorporating choice

- Build multiple labs so students can choose labs that work for them
 - \circ Had ~6 per unit, students needed to do ~4 to get full points (in labs)
- Added optional homework assignment where students participate in citizen science or explore how their own interests relate to astronomy
- Final poster project in which students were encouraged to choose a topic that excited them

The Course: Galactic Astronomy for majors

- 20 junior and senior astronomy major students
- All students have already taken some introductory physics and astronomy courses
- Many plan on pursuing a career in astronomy research
- Course goal: Students will obtain a basic understanding of current research being done in extragalactic astronomy and what research tools are available to extragalactic astronomers.

Programing! Programing! Programing!

- All astronomy research involves programming (as far as I know...)
- If we are preparing students to do research, they should have opportunities to engage in research-based activities
- Using Jupyter notebooks to build interactive (python) coding projects, students were able to learn some basic coding while also testing what we were discussing in class
 - Jupyter example: BPT diagrams

Lessons Learned

- Students enjoyed programming projects (multiple asked for more in course evals)
- Have back ups. Have back-ups to your back-ups. Code breaks.
 - If possible, practice on windows, macs, and linux machines before sending your students into the deep end
- When working in zoom breakout rooms, big questions with no right answers are great for getting discussions started
 - Ex: Which telescope in the decadal survey do you think should get funded? What type of weird galaxy would you want to research?

Discussion topics/suggestions

- What are some of the most essential skills in your field? How do students learn those skills?
- What potential hurdles might prevent adding real data to a course?
- What are some things you wished you learned in undergrad/before working in your field? Where do those skills fit in our curriculum?

