Astr 2310 Thurs. March 3, 2016 Today's Topics

- Chapter 6: Telescopes and Detectors
 - Optical Telescopes
 - Simple Optics and Image Formation
 - Resolution and Magnification
 - Invisible Astronomy
 - Ground-based Radio Astronomy
 - Ground-based Infrared Astronomy
 - Space-based Ultraviolet and X-ray Astronomy
 - Detectors and Imaging Processing
 - Photography
 - Charge-Coupled Devices (CCDs)
 - Signal-to-Noise and Background
 - Spectroscopy
 - Grating Spectrographs
 - Next Generation Telescopes
 - Hubble Space Telescope (HST)
 - James Webb Space Telescope (JWST)
 - Next Generation Ground-based Telescopes

Chapter 6 Homework

Chapter 6: #1, 2, 3, 4, 6

• Due Thursday March 31

Optical Telescopes - I

- Telescope Optics
 - Powers of a Telescope:
 - Light Gathering Power: Bigger Telescopes Collect More Light (see fainter things):

 $LGP \sim D^2$

- Angular magnification
 - A telescope satisfies the thin lens equation with the object at infinity. Thus the imageis formed at the focal length of the telescope. The scale is given by the arc-length formula:

 $s = f\theta$ where f is the focal length (mm) and s is a linear scale (eg., mm).

Thus, the angular magnification is given by the focal length and 1/f gives the "plate scale" (radians/mm). This is commonly expressed in arcsec/mm in which case:

θ/s (arcsec/mm) = 206265/f (mm)

• Minimum resolution angle:

Diffraction from a circular aperture limits the angular resolution of the telescope:

θ_{min} = 206265 λ/D

Optical Telescopes - II

• Refracting Telescopes

The refracting telescope forms an image using a lens. Inexpensive telescopes but research refractors are of historical interest only.

Reflecting Telescopes

All modern research telescopes use a mirror to collect light. Several different types (see figure

Invisible Astronomy

- Ground-based Radio Astronomy
 - Radio atm. window allows ground-based radio astronomy
 - Radio technology is well-developed
 - Diffraction limit of largest radio telescopes is huge
 - Consider a 300-meter dish at λ = 10 cm

 $\theta_{min} = \lambda/D = 0,1/300 = 3.33 \times 10^{-4}$ radian = 1 arcmin

- Radio Interferometry (aperture synthesis)
 - Use signal delay between multiple telescopes to simulate a bigger aperture

Ground-based and Space-based Infrared Astronomy

- Infrared Windows (between the water absorption bands) allows ground-based infrared astronomy
 - Lower extinction in the infrared
 - Star forming regions
 - Center of the Galaxy
 - Cool stars and dust
 - Redshift of distant objects in the expanding universe
 - Visible light redshifted into infrared
- Longer Wavelength Infrared must be Observed from Space

Space-based Ultraviolet and X-ray Astronomy

- Earth's atmosphere absorbs ultraviolet and x-ray photons
 - Ultraviolet telescopes use conventional technology (e.g., GALAX)
 - Hottest stars emit in UV
 - Accreting gas within interacting binary stars
 - Quasars and other active galactic nuclei
 - X-ray telescopes require grazing incidence reflecting optics
 - X-ray telescopes require grazing incidence reflecting optics to focus light (grazing light doesn' t penetrate the mirror)

Detectors and Image Processing

Photography

- In the old days, astronomical data was recorded on photographic film
 - Film could be digitized for computer analysis
 - Film has a low quantum (detection) efficiency (~2%)
 - Can't be reused and must be developed.
 - Wavelength response different depending treatment

Digital Detectors

- All modern detectors are digital
- Charged Coupled Detectors (CCDs) most common
 - Grid of electrodes create potential wells in Silicon
 - Electrons created by photons collected into "pixels"
 - Electrodes manipulated to transport the charge to an external readout amplifier
 - Signal digitized and stored on computer as a digital image.
 - Sizes range from 4 to 16 megapixels or more with mosaics

Pan-Starrs Camera

Largest mosaic under development is the 1.4 G pixel Pan-Starrs Camera

Spectroscopy (conceptual)

- Prism Spectrograph
 - Dispersion of light by a prism can be used to make a low resolution spectrometer
 - Slit isolates region of telescope's image
 - First lens makes light parallel (collimated)
 - Prism disperses light by color (refraction changes angle according to wavelength)
 - Second lens images slit onto a focal plane but at different positions according to wavelength (a spectrum)

Diffraction Grating

- Parallel groves act like multiple slits
 - Reflected light interferes constructively when path difference is an integer number of wavelengths.
 - Parallel light incident on surface reflects and interferes with itself
 - Angle of reflected light depends systematically with wavelength $n\lambda = d \sin \theta$ where n is the order (1, 2, ..), λ is the wavelength, and θ is angle

Grating Spectrometer

- Grating spectrometers offer more versatility than prism spectrographs and are now standard.
- A sit is used to isolate a position in the telescope's image plane
- A collimating lens is used to form parallel (collimated) light.
- The collimated light reflects from the grating with the angle a function of wavelength
- A camera is used to image the spectrum onto a detector

Next Generation Telescopes

- Hubble Space Telescope
 - Though old, Hubble is the first modern space-based telescope
- James Webb Space Telescope
 - The next generation of space-based telescopes
- Next Generation Ground-based Telescopes
 - Ground-based telescopes will use adaptive optics to achieve diffraction limited images

Next Generation Ground-based Telescopes

- Ground-based telescopes will use adaptive optics to achieve diffraction limited images
- Can be much larger than space-based telescopes
- Giant Magellan 24-meter Telescope and the Thirty Meter Telescope

Chapter 6 Homework

Chapter 6: #1, 2, 3, 4, 6

• Due Thursday March 31