#### Astr 2310 Tues. March 31, 2016 This week's Topics

- Chapter 7: The Sun, a Model Star
  - Structure of the Sun
    - Physical Properties
  - Photosphere
    - Opacity
    - Spectral Line Formation
    - Temperature Profile
  - The Chromosphere
    - Properties and Features
  - The Corona
    - Properties
  - Solar Activity
    - Sunspot Cycle
    - Zeeman Splitting and Magnetic Fields
    - Differential Rotation
    - Solar Wind

# **Basic Properties of the Sun**

- First we need to know the distance of the Sun, i.e., the AU
  - Huge effort required to measure the AU
  - Measure parallax of Mars (not precise enough)
  - Timing of transits of Venus (precise but very rare)
    - Reason Captain Cook sailed to Tahiti
    - People died trying to measure the AU!
- Luminosity:

We integrate the Sun's spectral energy distribution ( $S_{\lambda}$ ) over all wavelengths to give the bolometric flux at the Earth:

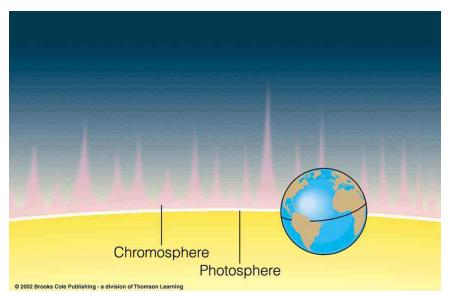
 $F_{bol} = INT \{S_{\lambda} d\lambda\} = 1370 W/m^2$  (Solar constant)

This radiation is spread over a sphere with a radius equal to that of the Earth's distance. Thus:

$$L_{bol} = F_{bol} 4\pi r^2 = (1370)(12.57)(1.496 \times 10^{11})^2$$

= 3.853 x 10<sup>26</sup> W

# **Chapter 7 Homework**


### Chapter 7: #7.2, 7.3, 7.4, 7.6, 7.8

Due Tues. April 12.

# **Basic Properties of the Sun**

- Angular size + distance
   (s = rθ)
   Radius: R<sub>sun</sub> = 6.96 × 10<sup>5</sup> km
- Newton's form of Kepler's Law  $M_{sun} = 4\pi^2 a^3/GP^2$

Mass:  $M_{sun} = 1.99 \times 10^{30} \text{ kg}$ 



DENSITY = 
$$\rho = \frac{\text{Mass}}{\text{Volume}} = \frac{M}{\frac{4}{3}\pi R^3}$$

<u>Average</u> density of Sun:  $\rho = 1.41$  gm/cm<sup>3</sup> Will be higher in center and (much) lower on outside

# **Basic Properties of the Sun**

#### **Surface Temperature:**

**Recall that we computed the Solar Luminosity from the bolometric flux:** 

 $L = F_{\text{at Earth}} \times 4 \pi R^2_{1 \text{ AU}}$ 

We now can compute the temperature since the Sun's luminosity = luminosity/unit area and multiply by Sun's surface area:

 $L = \sigma T^4_{surface} \times 4 \pi R^2_{sun}$ 

**Solving for the temperature:** 

 $T = (L/4 \pi \sigma R_{sun}^2) = [(3.853 \times 10^{26})/(12.57)(5.67 \times 10^{-8})(6.94 \times 10^{8})^2]^{1/4}$ 

#### Known as the Effective Temperature: 5788 K – Not all that hot by laboratory standards

#### **Physical State of material in Sun**

- At these T's,  $\rho$ 's, hydrogen will be a gas
  - At high enough T, as pressure (P) increases and  $\rho$  increases, you never really get a "liquid", just a very dense gas.
- H ionization?
  - On outside, H mostly neutral (a small fraction is ionized)
    - remember H ionized and Balmer lines gone only above 10,000 K
  - Over most of interior, H completely ionized
    - separate electrons (e<sup>-</sup>) and protons (p<sup>+</sup>)
    - Ionized gas called a "plasma"
- No discrete "surface" just increasing  $\rho$ , T, P, and "opacity"

#### How we determine T, $\rho$ , P vs depth?

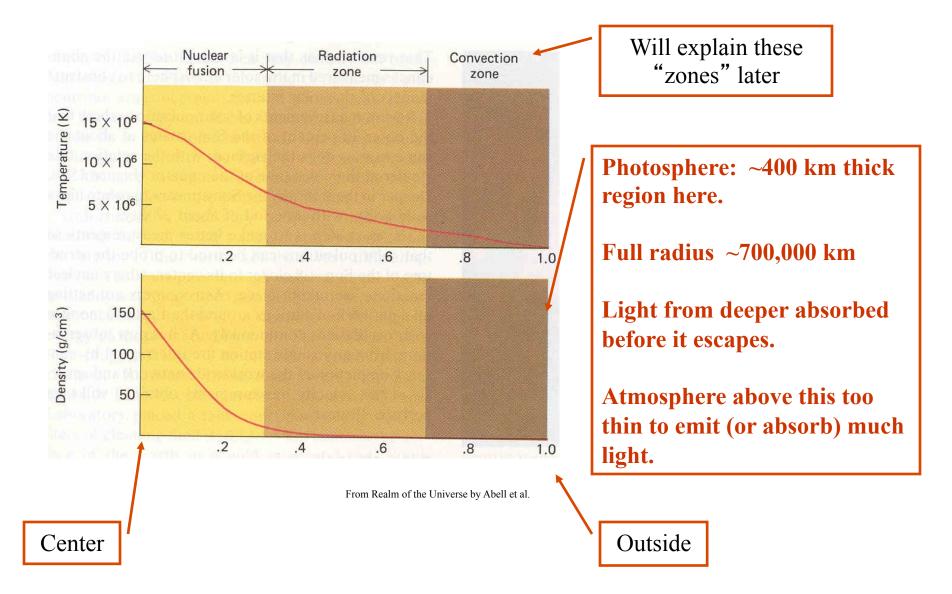
- From theory:
  - Pressure (P) and density ( $\rho$ ) must increase with depth
    - Weight of overlying gas compresses lower material -- "Hydrostatic equilibrium"
  - Temperature (T) must increase with depth
    - Energy is flowing out of the sun and it flows from hot to cold -- so hot inside
  - Numerical modeling of details let us calculate T(r),  $\rho$ (r), P(r)
- From observations of "oscillations" or "solar seismology"
  - The sun oscillates like a bell (or the air in an organ pipe)
  - The frequency depends upon sound speed, which depends upon T(r),  $\rho(r),$  P (r)
  - Observations from "Global Oscillation Network Group (GONG) telescopes.
- From interpreting the spectrum using Kirchoff's laws
  - The Sun looks like continuous emission: Solid or hot dense gas
  - Absorption lines in the spectrum: Cooler gas between us and the dense gas

## How we determine T, $\rho$ , P vs depth? - I

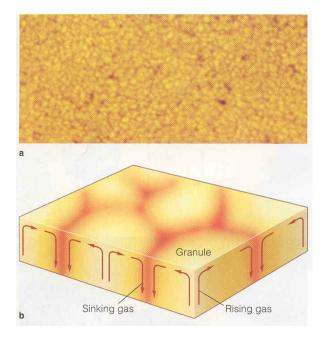
- From theory:
  - Pressure (P) and density (ρ) must increase with depth
    - Weight of overlying gas compresses lower material --"Hydrostatic equilibrium"
  - Temperature (T) must increase with depth
    - Energy is flowing out of the sun and it flows from hot to cold -- so hot inside
  - Numerical modeling of details let us calculate T (r),  $\rho$ (r), P(r)

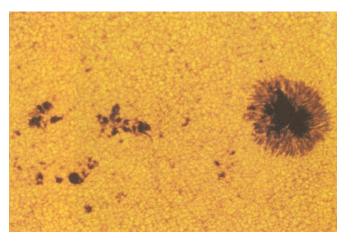
How we determine T,  $\rho$ , P vs depth? - II

- From <u>observations</u> of "oscillations" or "solar seismology"
  - The sun oscillates like a bell (or the air in an organ pipe)
  - The frequency depends upon sound speed, which depends upon T(r),  $\rho$ (r), P(r)
  - Observations from "Global Oscillation Network Group (GONG) telescopes.
- From using Kirchoff's laws
  - The Sun looks like continuous emission: Solid or hot dense gas
  - Absorption lines in the spectrum: Cooler gas between us and the dense gas


# The "Surface" of the Sun

 No discrete "surface" – just increase ρ, T, P, and "opacity"

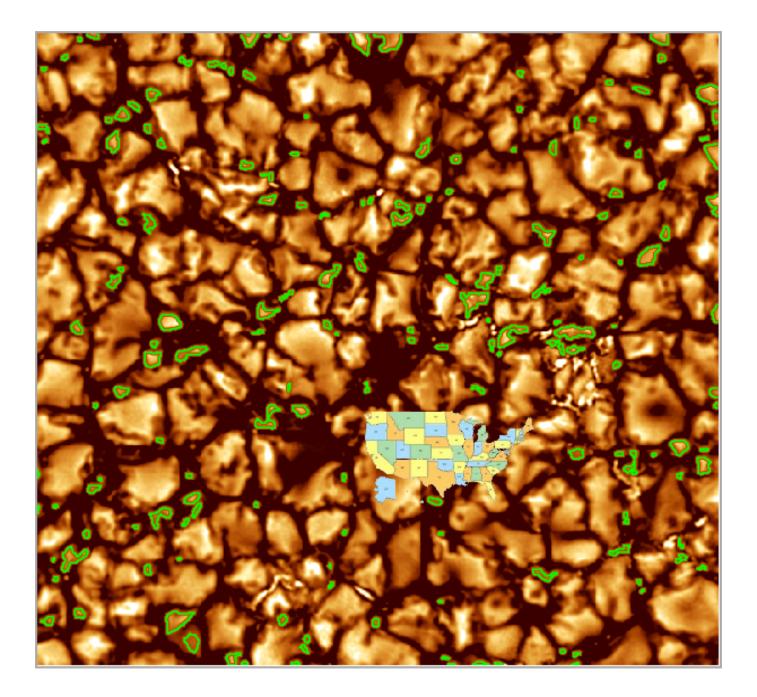

 "Surface" or photosphere defined by depth from which visible photons can escape.


- Opacity depends on wavelength, so apparent "surface" will be at different depths for different wavelengths
  - High opacity in absorption lines because these photons easily absorbed/emitted
    - Won't see very far in at these wavelengths.
  - Low opacity in between absorption lines
    - Can see in deeper at these wavelengths.
  - Eventually  $\rho$  so high gas opaque at all wavelengths (just as in solid)
  - "surface" high = cool = dark in lines; deep = hot = bright between lines

#### T, $\rho$ dependence upon depth inside the sun



#### **Detailed structure of the outer photosphere**

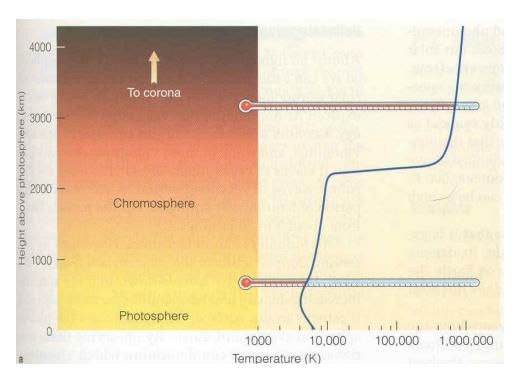




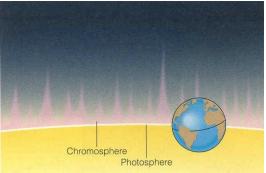

- CONVECTION:
  - Granulation and Supergranulation
  - Heat carried by actual motion of gas
  - Different than radiative transport
    - energy carried by photons
    - dominates deeper in sun

- SUNSPOTS
  - Darker (and cooler) regions of sun
  - Strong magnetic fields limit convection
  - Come and go in 11 (really 22) year cycle
  - Magnetic energy releases cause "flares"
  - Material ejected causes aurora

From our text: Horizons, by Seeds

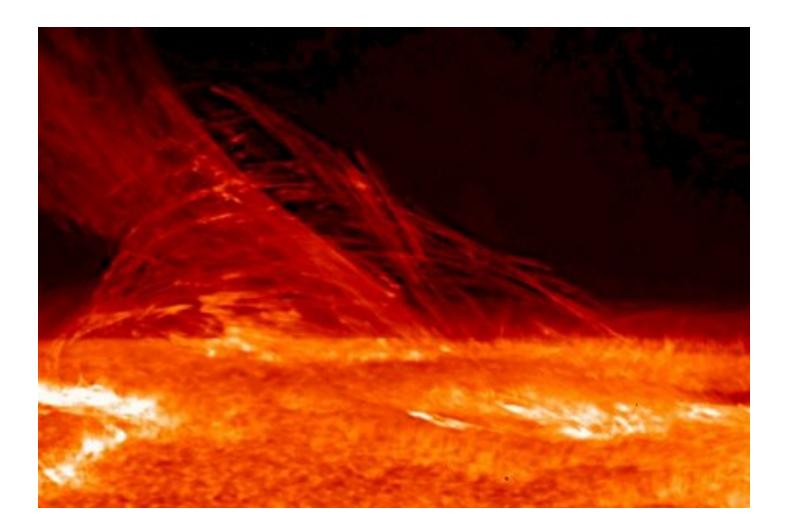


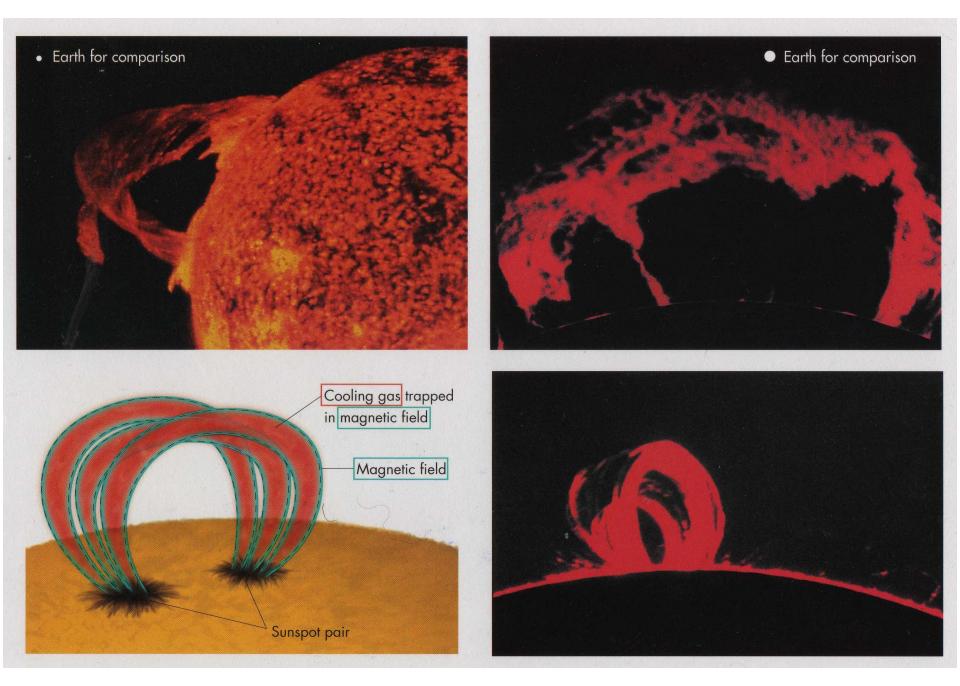

## **Outer Atmosphere: Chromosphere**

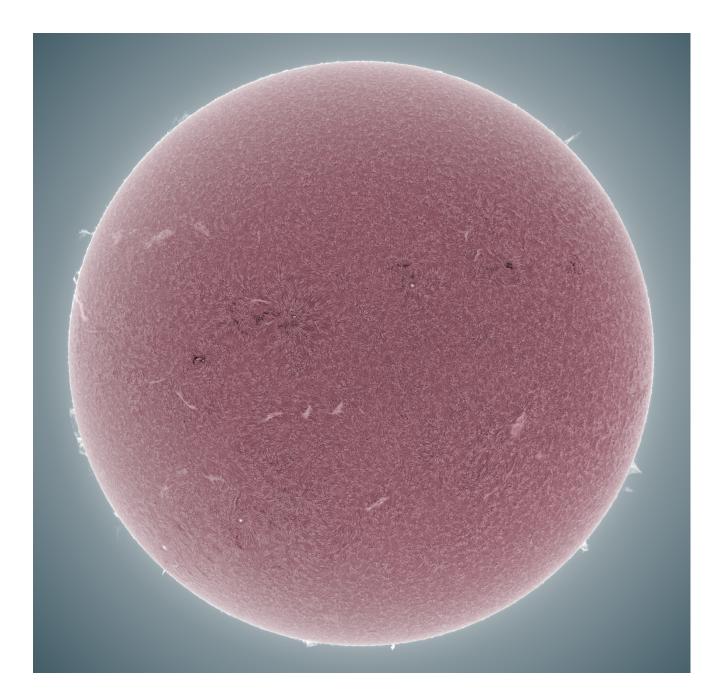

- Visible during solar eclipse
  - Spectrum shows emission lines
- Emits emission lines
  - Can be seen anytime by tuning narrow filter to these emission lines
  - Recall that the brightness of a given emission line depends on temperature and density
  - We can examine the chromospheric structure by imaging the Sun in several of these lines.
    - Resulting temperature profile reveals sharp transition region
- Promenences: flame-like projections
  - Some show loop-like morphology associated with pairs of sunspots
  - "Supergranulation" pattern
  - Filament: Prominence seen projected upon Sun
  - Spicules: small flame-like features

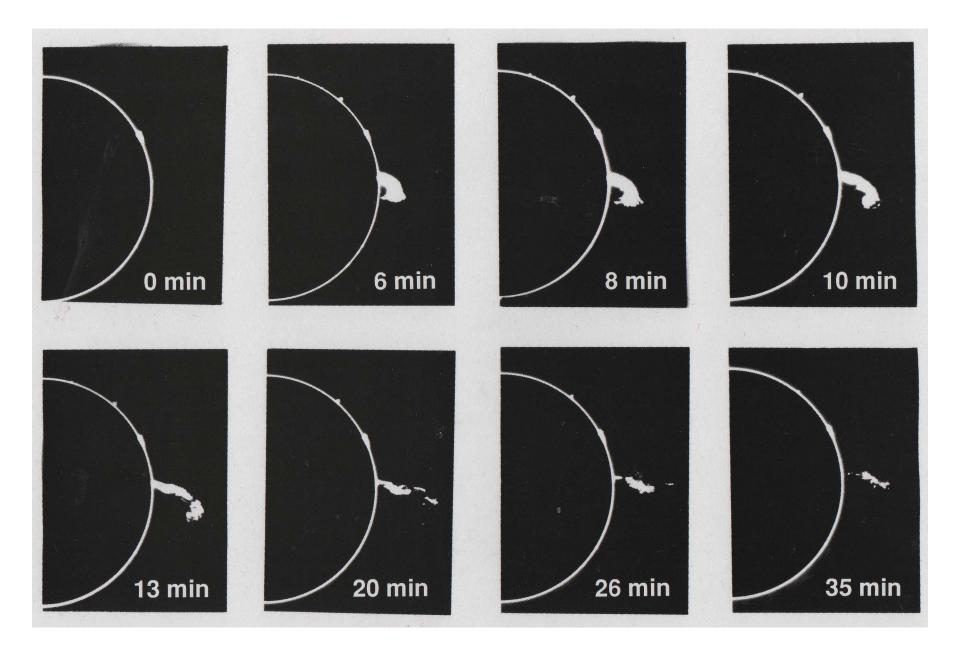
#### **Complicated T dependence at the very edge**

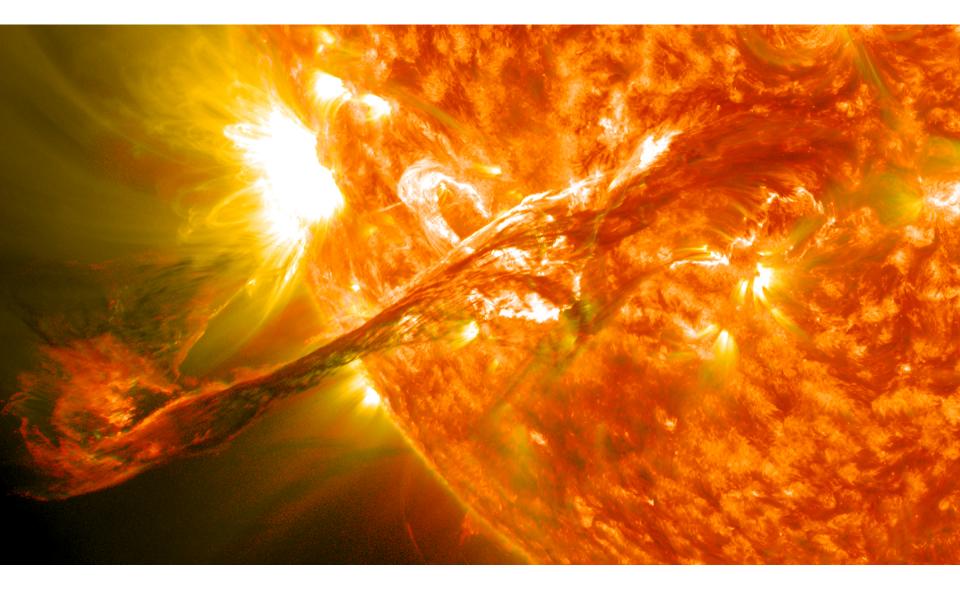
- We see emission lines at some wavelengths:
  - Implies very THIN HOT overlying gas at top of atmosphere
  - Gas is so thin it has trouble radiating heat away
  - Sound waves or magnetic fields heat thin gas
    - Chromosphere ("colored region" glows at a few wavelengths)
    - Corona ("crown" seen during solar eclipses)
    - Solar Wind (escaping wind of tenuous gas)

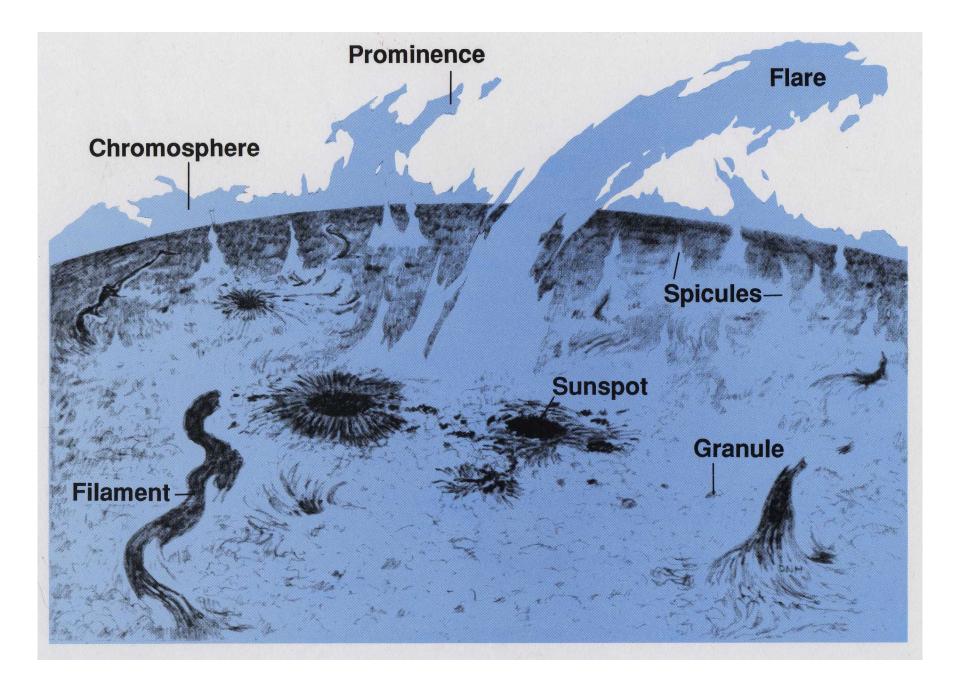


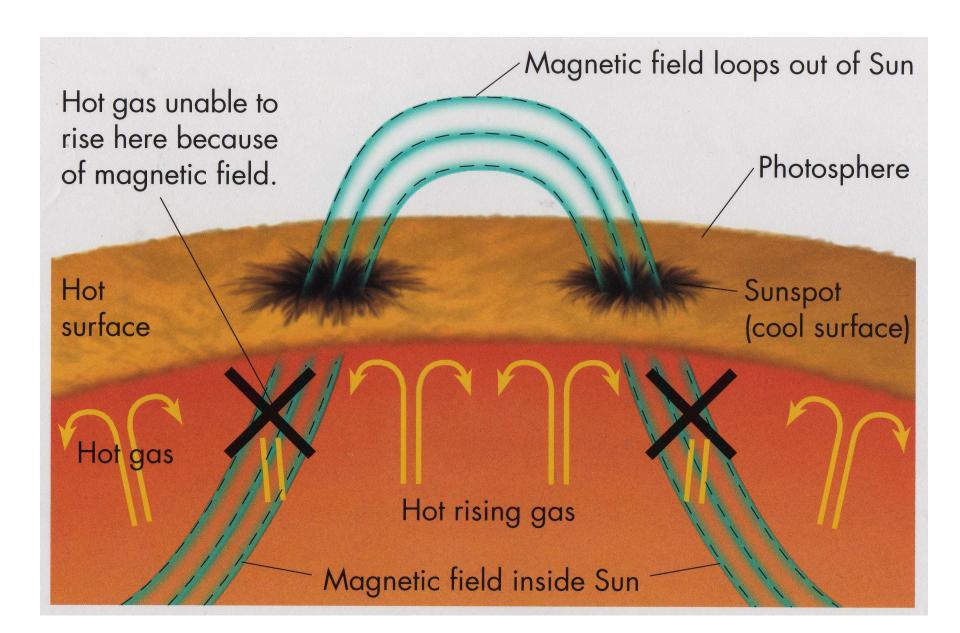





From our text: Horizons, by Seeds


- Promenences and Spicules
- Bright Flares around active regions














## **Diffuse Atmosphere: Corona**

#### • Visible during solar eclipse

- Coronal structure varies from eclipse to eclipse
- Subtle brush-like features at poles suggest magnetic field
- Can be seen anytime with specialized instruments that carefully block the light from the photosphere
  - Particularly effective in space where atmospheric scattering is nonexistent
- Spectrum also shows emission lines but VERY highly ionized
  - Fe XIV line requires  $T = 2 \times 10^6 K$
  - Sun's corona should emit x-rays
- X-ray Corona
  - Can be monitored anytime using x-ray telescopes in space
  - Complex features associated with sunspots and flares

Coronal structure varies from eclipse to eclipes

Spectrum of corona reveals two components:

Highly ionized atoms

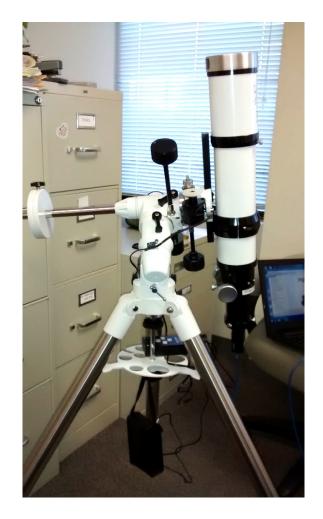
polarized solar spectrum

lons indicate T =  $2 \times 10^6$  K

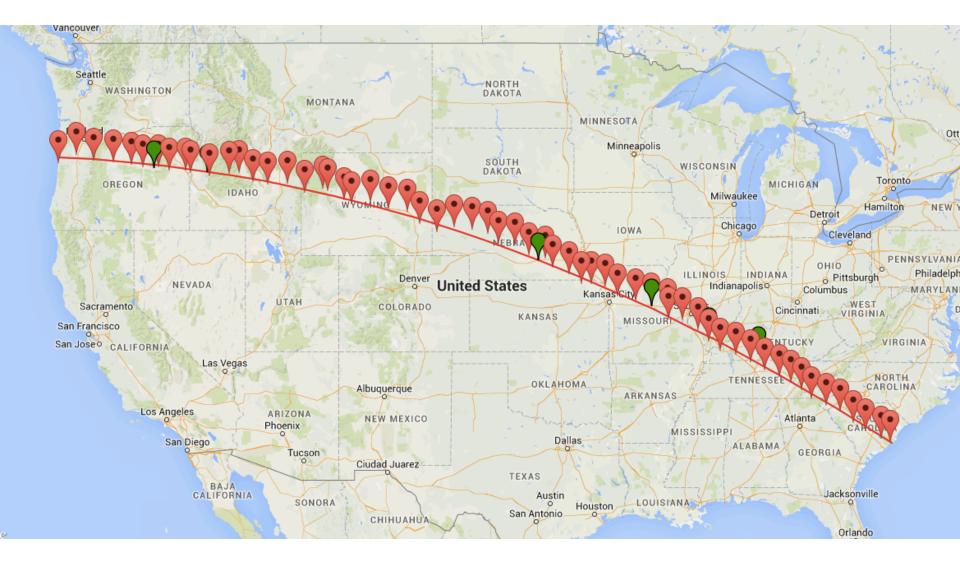
Polarized solar spectrum results from scattering of photospheric light by free electrons

Note the brush-like structure suggestive of a large-scale magnetic field






# **CATE Eclipse Experiment**


Image Coronal Evolution at 2017 Eclipse

# **CATE Eclipse Experiment**

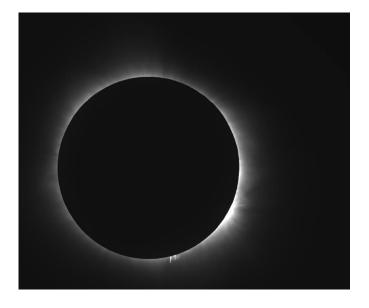
- An 80-mm Refractor
  - Corporate Sponsorship
- Equatorial Mount & Drive
- Point Grey High-res. CMOS Camera
- Solar Filter for Partial Phases
- Laptop & Cell Phones
  - GPS Time-tags
  - Phone Upload of Video to Cloud

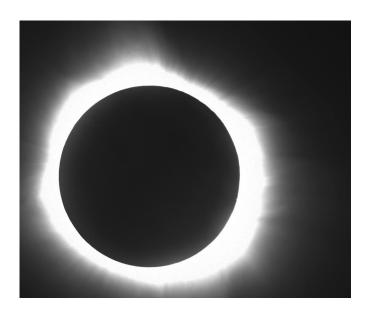


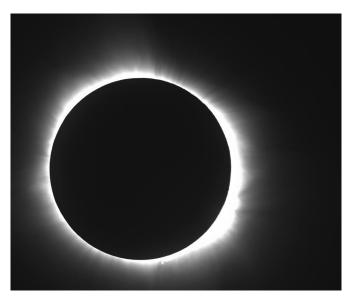
# **Eclipse Path & CATE Stations**

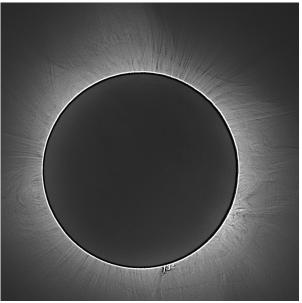


# **Indonesian Testing 2016**


- Five Prototypes Planned for Deployment for 2016 Indonesia Eclipse
- Hardware Testing
  - Telescopes & Video Cameras
  - Calibrations
  - Matlab Scripting
- Faculty/Student Coordinator Training
  - Telescope Assembly
- Data Analysis Techniques
  - Calibrations
  - Data Alignment
  - Spatial Filtering

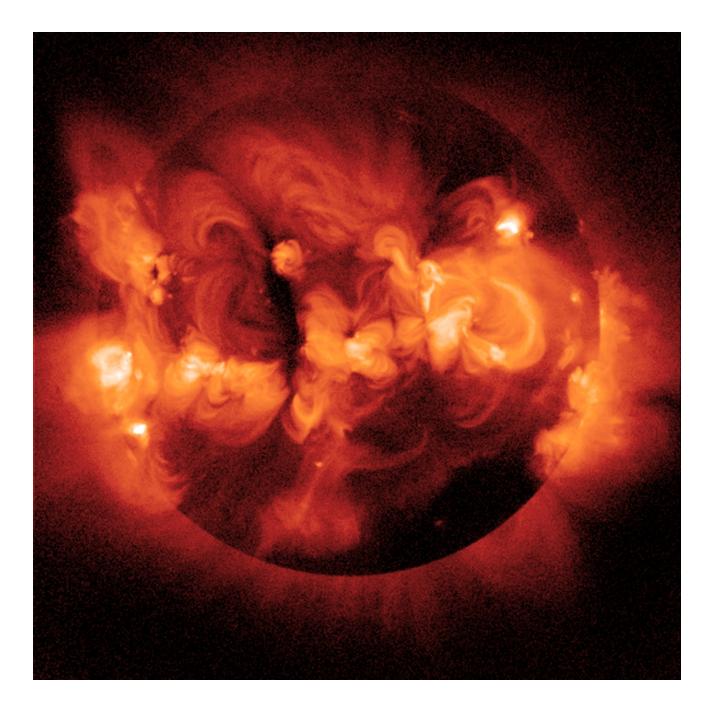




# **Crescent Sun Just after Totality**



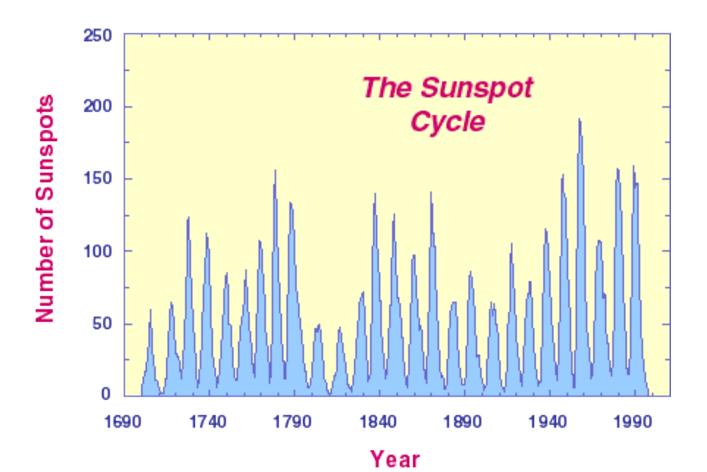

# **CATE SIU Team's Data**

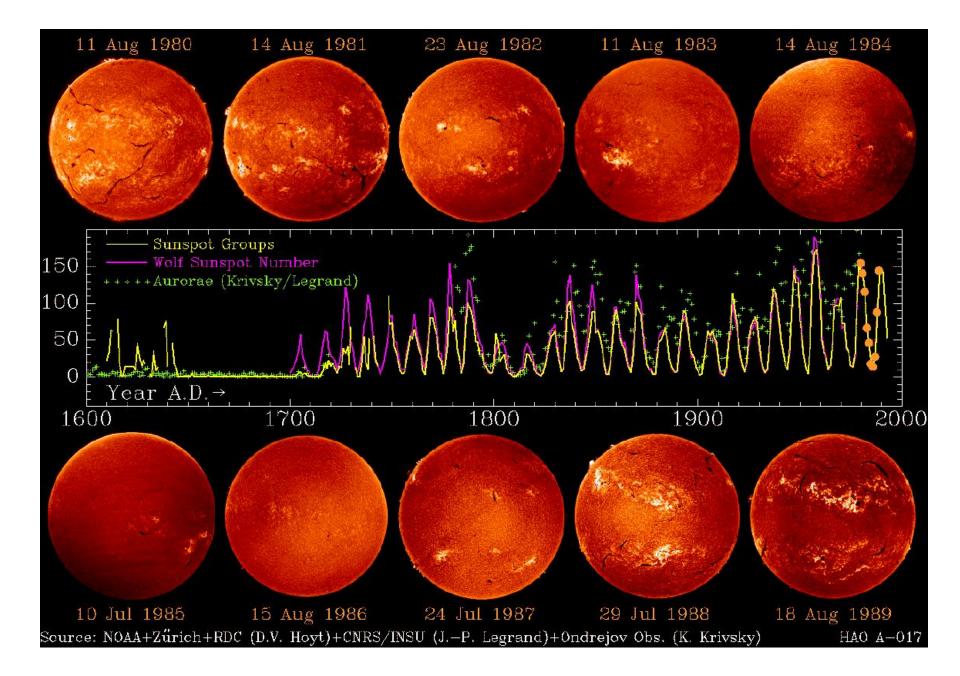








# Nice Color Image (What to



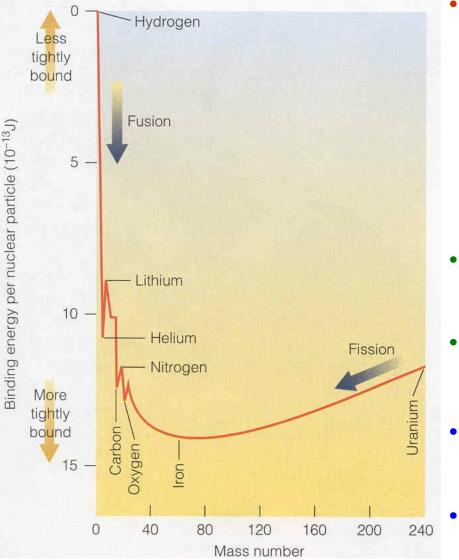



# **Solar Activity**

- Sunspot numbers regularly increase and fall with an 11 year cycle
- High resolution spectroscopy of sunspots reveals "Zeeman splitting"
  - Zeeman splitting results from strong magnetic fields






## **Solar Wind**

- Coronal Mass Ejections
  - Ejection of mass from the Sun
  - Hot ionized gas (plasma) expands
  - Result is the "solar wind"
- The Solar Wind
  - Charged particles (ions) that fill the solar system as the gas expands
  - Earth protected by magnetosphere
  - Origin of Aurora
  - May influence Earth's weather

## Nuclear forces and nuclear energy

- What holds protons in the nuclei of atoms?
  - Coulomb (electric) repulsion should make protons fly apart
    - They are packed so close together must have <u>very</u> strong force to hold them
  - Nuclear <u>"Strong force</u>" attracts nucleons (protons, neutrons)
- Why doesn't strong force collapse all atoms into a giant nucleus?
  - Nuclear Strong force is very short range
    - falls off quickly after a few proton radii
  - Coulomb force is long range
    - falling off only as 1/r<sup>2</sup>
- At large distances only coulomb force is important ⇒ repulsion
- Nuclear Strong Force important only close together
  - Requires very high speed (high temperature) collision for fusion

#### The Curve of Binding Energy



- If you keep adding protons to a nucleus?
  - Coulomb repulsion continues to increase
    - new proton feels repulsion from all other protons
  - Strong force attraction reaches limit
    - new proton can't feel attraction from protons on far side of a big nucleus
- Gain energy only up to point where Coulomb repulsion outweighs strong force attraction.
- Most "stable" nucleus is <sup>56</sup>Fe (26 protons, 30 neutrons, 56 total)
- Release energy by fusion of light nuclei to make heaver ones– up to <sup>56</sup>Fe
- Release energy by fission of heavy nuclei to make lighter ones down to <sup>56</sup>Fe

From our text: Horizons, by Seeds

#### The Role of the Nuclear <u>"Weak Force"</u>

- Why can't we keep adding neutrons rather than protons?
  - They feel strong force attraction with no Coulomb repulsion.
  - You should be able to get lots of energy by adding neutrons.
- Nuclear <u>Weak Force</u> can (slowly) convert protons to neutrons and back.
  - The reactions involve an electron or "positron" to keep charges balanced.
  - The reactions produce an almost massless particle called a neutrino.

| - p⁺ + e⁻ ⇔ n + ν     | p⁺ is proton<br>e⁻ is electron<br>n is neutron<br>v is neutrino                                                                            |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| $- p^+ ⇔ n + e^+ + ν$ | e <sup>+</sup> is positron = antiparticle of electron                                                                                      |
| thereby<br>reaction.  | If this second reaction happens then the positron<br>annihilates the next electron it encounters,<br>producing the equivalent of the first |

- The weak force likes to keep ~equal protons and neutrons in a nucleus.
- The proton repulsion tips the balance towards slightly more neutrons in big nuclei.

## The four fundamental forces

- Gravity Dominates on astronomical scales
- Electromagnetic Holds atoms together: Chemistry
- Strong force Holds nuclei together: Nuclear energy
- Weak force n ⇔p<sup>+</sup>, e<sup>-</sup> Radioactive decay

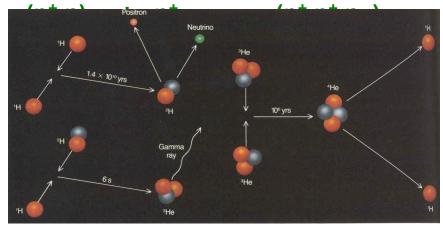
(will also play critical role in solar fusion)

#### Fusion in the sun I.

- Have lots of hydrogen (p<sup>+</sup> and e<sup>-</sup>) what can we make from it?
- If <sup>2</sup>He (2 protons, 0 neutrons) were stable, fusion would be "easy"
  - Run two protons into each other at fast enough to overcome Coulomb repulsion
  - Once they get close enough strong force takes over, and holds them as nucleus.

#### Fusion in the sun II.

- "Unfortunately" <sup>2</sup>He isn't stable
  - To get stable He need to add one or two neutrons to:
    - Increase Strong Force, without increasing Coulomb force
  - Not really "unfortunate" If <sup>2</sup>He were stable:
    - Sun would burn energy way too fast and would have gone out by now
- Weak force converts proton to neutron-fusion
   will be slow
  - In solar fusion no excess neutrons lying around
  - Hydrogen bombs use deuterium: <sup>2</sup>H = (p<sup>+</sup> n) or tritium: <sup>3</sup>H = (p<sup>+</sup> n n) to provide it


#### **The Proton-Proton chain**

- The first step is slow because it relies on two rare events happening simultaneously
  - Two protons collide with enough energy to overcome the Coulomb barrier
  - While they are close the weak force turns one proton into a neutron
    - The resulting combination of a proton and a neutron IS a stable nucleus

$$- {}^{1}H + {}^{1}H \rightarrow {}^{2}H + e^{+} + v$$
v

$$p^{+} + p^{+} \rightarrow (p^{+} n) + e^{+} +$$

- The next two steps go quickly because they rely only on the strong force
  - <sup>2</sup>H + <sup>1</sup>H  $\rightarrow$  <sup>3</sup>H
- The net effect is  $4 {}^{1}H \rightarrow {}^{4}He$



From Realm of the Universe, by Abell et al.

#### **Energy Released?**

- Could work it out "classically" by strength of forces
  - Classical mechanics doesn't work at this scale Need quantum mechanics
  - Strength of nuclear forces not originally known
- Use E=mc<sup>2</sup> to do accounting
  - Mass is a measure of the energy stored in a system
  - Loss of mass from a system means release of energy from that system
- Compare mass of four <sup>1</sup>H to mass of one <sup>4</sup>He
  - $6.693 \times 10^{-27}$  kg  $6.645 \times 10^{-27}$  kg =  $0.048 \times 10^{-27}$  kg mass lost in reaction
  - E = mc<sup>2</sup> = 0.048 × 10<sup>-27</sup> kg × (3 × 10<sup>8</sup> m/s)<sup>2</sup> = 0.43 × 10<sup>-11</sup> kg m<sup>2</sup>/s<sup>2</sup> = 0.43 × 10<sup>-11</sup> J

(note == a Joule is just shorthand for kg m<sup>2</sup>/

**S**<sup>2</sup>)

- So  $4.3 \times 10^{-12}$  J of energy released from each reaction
  - This is huge compared to chemical energy: 2.2 ×10<sup>-18</sup> J to ionize hydrogen

#### How long will Sun's fuel last?

- Luminosity of sun:  $3.8 \times 10^{26}$  J/s
- **H burned rate:** 4 H atoms / He created  $\times \frac{3.8 \times 10^{26} \text{ J/s}}{4.3 \times 10^{-12} \text{ J} / \text{He created}} = 3.5 \times 10^{38} \text{ H atoms / s}$
- **Hatoms available:**  $\frac{M_{\text{Sun}}}{m_{\text{H}}} = \frac{2.0 \times 10^{30} \text{ kg}}{1.67 \times 10^{-27} \text{ kg/ H atom}} = 1.2 \times 10^{57} \text{ H atoms}$
- Lifetime:

 $\frac{1.2 \times 10^{57} \text{ H atoms}}{3.5 \times 10^{38} \text{ H atoms / s}} = 3.4 \times 10^{18} \text{ s} = \frac{3.4 \times 10^{18} \text{ s}}{3.14 \times 10^7 \text{ s/yr}} = 1.1 \times 10^{11} \text{ yr} = 110 \text{ billion years}$ 

 In reality not all the atoms we start with are H, and only those near the center are available for fusion. The structure of the sun will change when about 10% of the above total have been used, so after about 10 billion years.

### **Testing the solar fusion model**

- Does lifetime of sun make sense?
  - Oldest rocks on earth ~4 billion years old
  - Oldest rocks in meteorites ~4.5 billion years old
- Other stars with higher/lower luminosity
  - Causes for different luminosity
  - Lifetimes of those stars
- Look for neutrinos from fusion
  - Complicated story due to neutrino properties
  - Example of how astronomy presents "extreme" conditions

# Neutrinos

- Generated by "weak" force during  $p^+ \rightarrow n + e^+ + v$
- "Massless" particles which interact poorly with matter
  - In that first respect, similar to photons
  - Can pass through sun without being absorbed
  - Same property makes them very hard to detect
- Davis experiment at Homestake Mine in Black Hills
  - 100,000 gallon tank of C<sub>2</sub>Cl<sub>4</sub> dry cleaning fluid
  - in Cl nuclei  $n + v \rightarrow p^+ + e^-$  so Cl (Z=17) becomes Ar (Z=18)
  - Physically separate out the Ar, then wait for it to radioactively decay
  - Saw only 1/3 the neutrinos predicted

# **Missing Neutrino Problem**

- Lack of solar neutrinos confirmed by Kamiokande II detector in Japan. (Using different detection method)
- Possible explanation in terms of Neutrino physics
  - 3 different types of Neutrinos:
    - <u>electron</u>, muon, and tau neutrinos
    - Sun generates and CI detectors see only electron neutrinos
    - Can electron neutrinos can change to another type on way here?
  - These "neutrino oscillations" are possible if neutrino has non-zero mass
  - Kamiokande II evidence of muon neutrinos becoming electron ones
- Read "Window on Science 7-2" on "scientific faith"
- Neutrino mass may have implications for "cosmology"
- Neutrinos also used to study supernova 1987A

#### **Chapter 7 Homework**

#### Chapter 7: #7.2, 7.3, 7.4, 7.6, 7.8

Due Tues. April 12