Phys 2310 Mon. Dec. 4, 2017

Today’s Topics

• Begin supplementary material: Lasers
• Reading for Next Time
Reading this Week

By Wed.:
Lasers, Holography
Homework this Week

No Homework this chapter. Finish previous one and

Study for the Final Exam
Supplementary: Lasers

- Radiant Energy and Matter in Equilibrium
 - Blackbody Radiation
 - Conservation of Energy Requires Objects in Thermal Equilibrium Must Emit as Much Energy as They Absorb
 - More absorption means temp. rises and vice versa
 - Example: pottery in equilibrium with kiln walls
 - Molecules in a Solid Emit at a Broad Range of Frequencies
 - Spectral shape (Intensity vs. λ) is called a Blackbody
 - A perfect absorber in equilibrium with surroundings
 - Note that a mirror feels cool to the touch since it is not in equilibrium with its surroundings
 - Explanation by Plank required light be quantized (photons)
 - Stefan-Boltzmann Law
 - Total energy emitted per second (power):
 \[P = \text{Emissivity} \times \text{Area} \times \sigma \times T^4 \]
 \[(\sigma = 5.67 \times 10^{-8} \text{ W/m}^2\text{K}) \]
Supplementary: Lasers

- Radiant Energy and Matter in Equilibrium
 - Plank Radiation Law
 - Derived thermal emission spectrum by assuming atoms in solid follow a Maxwell-Boltzmann distribution in energy and can only emit radiation in discrete energies (photons).
 - Result is:

\[
I_\lambda = \frac{2\pi hc^2}{\lambda^5} \left[\frac{1}{e^{\frac{hc}{\lambda kT}} - 1} \right]
\]

where h is Plank's constant, k is Boltzmann's constant

Wein’s Displacement Law:
Describes the shift in wavelength of the peak with temperature.

\[\lambda_{\text{max}} \mu m T(K) = 2898\]
Supplementary : Lasers

• Stimulated Emission
 – Maxwell-Boltzmann Distribution
 • Equipartition of energy requires that atoms follow an exponential distribution in energy:
 \[N_i = N_0 e^{-E/kT} \quad (k = 1.38 \times 10^{-23} \text{ m}^2\text{kg}^{-1}\text{K}) \]
 – Einstein Coefficients
 • Describes the rate at which atoms absorb and emit energy. The first two (Bs) are strongly \(\lambda \) dependent and sensitive to the photon energy density \(u_\nu \).

\[
\left(\frac{dN_i}{dt} \right)_{\text{absorp}} = -B_{ij} N_i u_\nu \quad \text{(stimulated absorption)}
\]
\[
\left(\frac{dN_j}{dt} \right)_{\text{stim}} = -B_{ji} N_j u_\nu \quad \text{(stimulated emission)}
\]
\[
\left(\frac{dN_j}{dt} \right)_{\text{spon}} = -A_{ji} N_j \quad \text{(spontaneous emission)}
\]

where \(u_\nu \) is the spectral energy density. Note that in stimulated emission the E-field of the photon perturbs the atom such that it emits a matching photon in wavelength and phase (crucial).
Supplementary : Lasers-I

- Population Inversion
 - Quantum mechanical rules are used to calculate the Einstein coefficients.
 - $B_{ij} = B_{ji}$ since prob. of stim. emission equals prob. of stim. absorption.
 - A_{ji} is a measure of the excited state lifetime: $1/A_{ji} = \tau$
 $$1/A_{ji} \sim 100\text{ns but:}$$
 - Some transitions are “metastable,” meaning that $1/A_{ji} \sim 10 \text{ ms (100 times longer)}$.
 - Population inversion can occur if some process (collisions) can populate an excited, metastable state faster than A_{ji} can depopulate it.
 - Fluorescence and Phosphorescence
 - When spontaneous emission occurs the photon can stimulate the other metastable atoms to emit a cascade of photons.
 » Result will be a burst of coherent radiation (laser).
Supplementary: Lasers-II

- **The Ruby Laser**
 - First optical λ laser
 - First solid-state laser
 - Fluorescence of Cr$^{++}$ ion
 - Blue and Green absorption and then vibrational down-conversion to metastable state.
 - Spontaneous emission results in red fluorescent “glow” of ruby
Supplementary : Lasers-II

- **Ruby Laser**
 - A flashtube containing Xe gas, etc. creates optical light to pump the ruby crystal (optical pumping). Vibrational relaxation populates the metastable levels.
 - Spontaneous emission of a few atoms creates stimulated emission in others.
 - Constraining radiation to a cavity results in more stimulated emissions and an “avalanche” of coherent radiation.
 - Radiation escapes as a beam but in pulses
 - Ruby can be grown in lab but expensive
 - Ruby laser can be very powerful
 - Relatively inefficient due to heat losses
Supplementary: Lasers-III

- **The Laser**
 - Resonant (Fabry-Perot) Cavities
 - Standing waves exist within a cavity (l) when:
 \[l = m \frac{\lambda}{2} \text{ where } m \text{ is an integer} \]
 - Thus the cavity can be tuned to isolate a particular emission line from the atom if more than one are involved.
 - Other cavity geometries are possible.
Supplementary: Lasers-IV

- **Gas Laser**
 - **HeNe Laser**
 - **Excited levels of He and Ne are close in energy**
 - Energy in He is transferred to Ne via collisions
 - High voltage strips electrons off He and recombination results in excited state.
 - If Ne collisions occurs quickly enough it populates metastable states (4s and 5s)
 - Spontaneous emission then results in lasing
Supplementary : Lasers-IV

- **Gas Laser**
 - **HeNe Laser**
 - Inexpensive to make
 - Produces visible light
 - Relatively stable
 - Low efficiency
 - **Argon Laser**
 - Similar to HeNe laser
 - More lines so cavity can be tuned to different λ.
 - Low efficiency
 - **Other Noble Gas Lasers**
 - Kr and Xe useful for blue λ
 - N₂ lases in UV, CO₂ in IR
Supplementary : Lasers-IV

• The Semiconductor Laser
 – Interface of n-doped and p-doped interface of semi-conductors can produce light upon electron-hole recombination (LED). Gallium-Arsenide is most common for IR.
 – NdYAG (Neodymium Yttrium Arsenic Garnet) lasers common too (next slide).
 • Add frequency doubling crystal to produce green
 – Laser results if surfaces are polished
 – Basis for all laser pointers and CD-ROM and DVD readers and writers and BlueRay players
 – Lasing \(\lambda \) is in the infrared
 • Ideal for fiber optic communication
 • Can be mass produced
 • Rectangular beam profile
Supplementary: Lasers-V

• Other Solidstate Lasers
 – Diode lasers can be used to pump a crystal to produce high power output
 • NdYVO₄ or NdYAG are most common
 • Typical $\lambda \sim 1.064 \mu m$
 – An optically active crystal “cavity” can be added to double (532nm) or triple (355 m) the input frequency
 • KTP most common
 • Result is visible green or even blue laser
 – Ideal for lab lasers and laser pointers
 – BlueRay lasers
The Dye Laser

- Fluorescent dyes usually have many metastable states
 - They can be pumped by another laser (e.g. N$_2$) or via flashlamp
 - The lasing cavity can be tuned via a grating for one of the mirrors
 - Result is a laser that can produce a broad range of λ
- Lots of stuff with organic dyes will lase, even JELLO!
- See internet for lots of examples of homebuilt ones.
Supplementary : Lasers-VI

- Laser Applications
 - Lasers Come in Variety of Packages for Research
 - Diode Lasers Now Inexpensive
 - They can be used for entertainment
 - Lasers used in Manufacturing
Supplementary : Lasers-VII

• The Laser
 – More Applications
 • Manufacturing
 • Surveying
 • Raman Spectroscopy
 – Fluorescence and Phosphorescence
 • Cosmetics
 • Communication
 • Fusion & Weapons
Homework this Week

No Homework this chapter. Finish previous one and

Study for the Final Exam