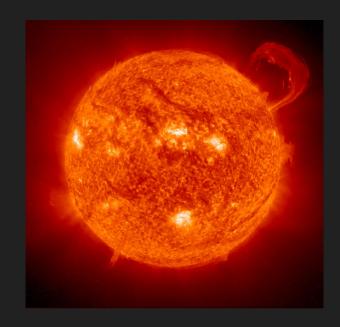


Outline



- Solar Luminosity-
- Energy mechanisms-
 - Combustion
 - Contraction
 - Nuclear fusion
- Proton-proton chain-
- Hydrostatic equilibrium-
- Composition of the Sun
 - o Poll everywhere
- Zeeman effect
- Structure of the Sun
 - Radiative core
 - Convective envelope
 - Photosphere
 - Chromosphere
 - Corona

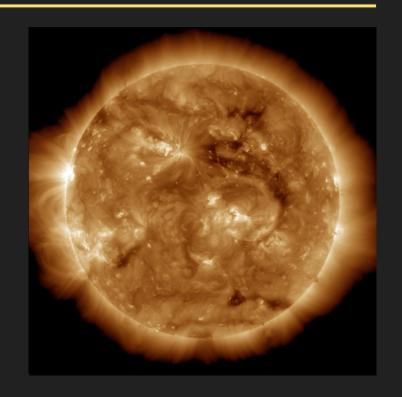
Solar luminosity

- Luminosity- Intrinsic brightness, independent of distance. Energy per second
- Solar Luminosity- brightness of the Sun
- 1 L[⊙] = 3.828x10²⁶ Joules released in one second, Watts

Solar luminosity

• 4x10²⁴ (4 septillion) 100-Watt light bulbs

- US energy consumption in 2023: 93.59 quadrillion (10¹⁵) BTU
- Sun emits 4 million times this energy every second.



- World nuclear arsenal: ~12,000 weapons, 30,000 megatons TNT
- Sun emits 3 million times this energy every second.

Energy mechanisms

- 3 main ideas for what could power the Sun:
 - 1. Combustion
 - 2. Contraction
 - 3. Nuclear fusion
- We know the Sun's energy output
 is L = 3.828E26 Watts, and mass M
 = 2E30 kg.
- Test these hypotheses

- If the Sun is powered by combustion, we can estimate its expected lifetime.
- The Sun's total available energy is:
 - o The Sun's total mass (kg) x The energy that can be released per kg (J /kg)
- The Sun's lifetime is then total energy / energy output per year

$$\begin{split} \tau \text{ (years)} &= \text{Mass} \times \frac{1}{\text{Energy output per second}} \times \frac{\text{years}}{\text{second}} \times \frac{\text{Energy}}{\text{Mass}} \\ \tau \text{ (years)} &= 2 \times 10^{30} \text{ kg} \times \frac{1}{3.828 \times 10^{26} \text{ J s}^{-1}} \times \frac{1 \text{ year}}{\pi \times 10^7 \text{ s}} \times \frac{\text{Energy (J)}}{\text{Mass (kg)}} \\ \tau \text{ (years)} &\approx 10^{-4} \times \frac{\text{Energy (J)}}{\text{Mass (kg)}} \end{split}$$

Lifetime (years) = 10⁻⁴ x Energy released (J) per mass consumed (kg)

- 1. Standard gasoline is a highly efficient combustible. Burning 1 kg of it released 40 Megajoules (40E6 J) of energy. What is the oldest the Sun could be if combustion was the source of the Sun's energy?
 - a. 4 million years
 - b. 400,000 years
 - c. 40,000 years
 - d. 4,000 years

Lifetime (years) = 10⁻⁴ x Energy released (J) per mass consumed (kg)

- 1. Standard gasoline is a highly efficient combustible. Burning 1 kg of it released 40 Megajoules (40E6 J) of energy. What is the oldest the Sun could be if combustion was the source of the Sun's energy?
 - a. 4 million years
 - b. 400,000 years
 - c. 40,000 years
 - d. 4,000 years

- The Sun could only live for a few thousand years if powered by combustion.
- Some rocks on Earth are ~4 billion years old.
- Not supported

Energy mechanisms- Contraction

Astronomers realized a contracting body releases energy.

$$\langle U \rangle = \frac{3GM_{\odot}^2}{10R_{\odot}}$$

$$\tau \approx \frac{\langle U \rangle}{L_{\odot}}$$

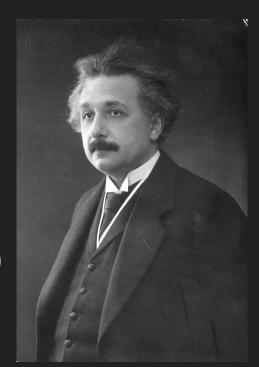
$$\tau \approx \frac{3GM_{\odot}^2}{10R_{\odot}L_{\odot}}$$

$$L_{\odot} = 3.828 \times 10^{26} \text{ W}$$

$$M_{\odot} = 2 \times 10^{30} \text{ kg}$$

$$R_{\odot} = 6.957 \times 10^8 \text{ m}$$

$$\tau \approx 9.57 \text{ million years}$$

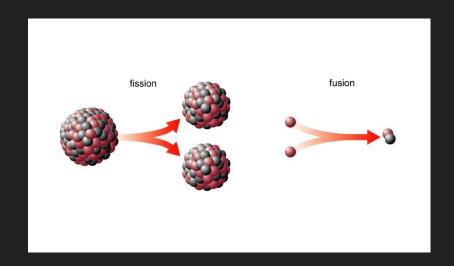


Energy mechanisms- Nuclear fusion

- Contraction could not be the source of the Sun's energy
- Einstein's Theory of Special Relativity was key to explain the Sun.
- Mass-energy equivalence

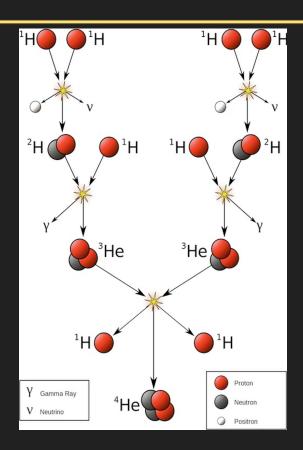
$$E = mc^2$$

- Tiny amounts of matter can be converted to tremendous amount of energy.
- A single gram of matter can power your house for ~2,000 years if converted entirely to energy.
- To power the Sun, about 4 billion kilograms of matter is converted to energy every second.

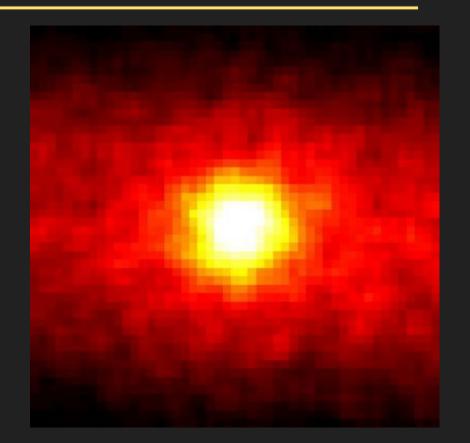

Energy mechanisms- Nuclear fusion

- A helium atom has two protons and two neutrons.
- Hydrogen has only one proton.
- Helium is 0.7% less massive than four hydrogen atoms.
- Leftover mass is released as energy.
- Based on this ratio, 600 billion kg of hydrogen are burned every second.
- 6E29 kg of hydrogen in the core, lifetime of ~10 billion years.
 - The Sun is about halfway through its life.

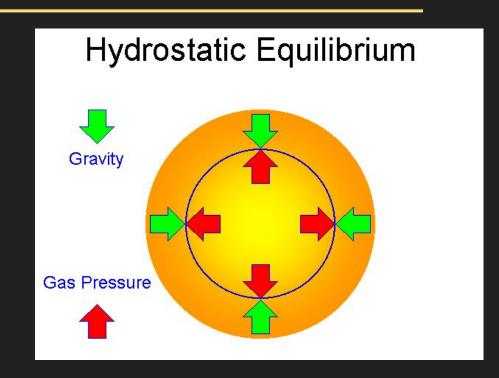
Fusion, not Fission


- Merging light nuclei, fusion.
 - The Sun
 - Hydrogen bomb
- Breaking up heavy nuclei, fission.
 - Nuclear power plants
 - o "Atom" bombs

Proton-proton chain

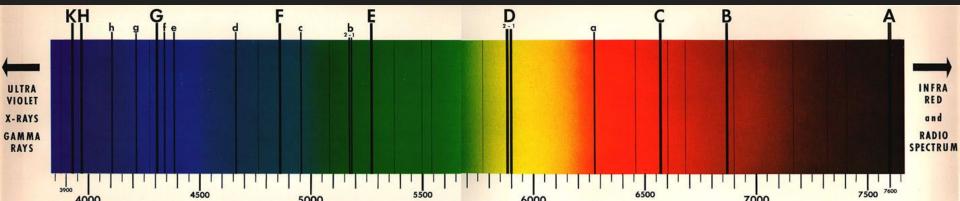

- Fusion in the Sun called proton-proton chain.
- 4 hydrogen atoms net 1 helium atom
- Requires high temperatures (7 million K)
- Produces energy (photons), helium, and the neutrino

Proton-proton chain


- The Sun should release neutrinos from the reactions in its core.
- Hard to detect
- They pass through Earth undeflected, without interacting
- Neutrino detects over hundred of days produce this image of the Sun.

Hydrostatic equilibrium

- The Sun contracted due to gravity in the Solar System.
- Why doesn't the Sun contract more?
- The outward pressure from fusion in the core balances the inward force of gravity.
- Hydrostatic equilibrium.



Composition of the Sun

- The Sun's spectrum reveals absorption from oxygen, hydrogen, sodium, iron, calcium. Is the Sun made of the same material as Earth?
- These are only transitions in the visible bandpass.
- The Sun is mostly hydrogen and helium, from Cecilia Payne.

Composition of the Sun

The Abundance of Elements in the Sun

Element	Percentage by Number of Atoms	Percentage By Mass
Hydrogen	92.0	73.4
Helium	7.8	25.0
Carbon	0.02	0.20
Nitrogen	0.008	0.09
Oxygen	0.06	0.80
Neon	0.01	0.16
Magnesium	0.003	0.06
Silicon	0.004	0.09
Sulfur	0.002	0.05
Iron	0.003	0.14

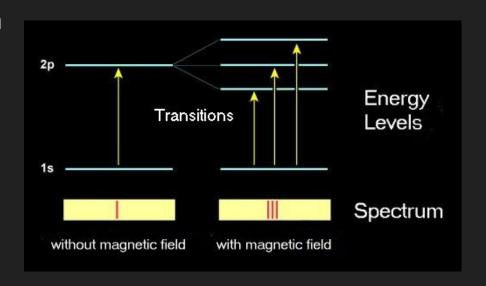
Table 15.2

Poll everywhere

When poll is active respond at **PollEv.com/nikhilpatten355**

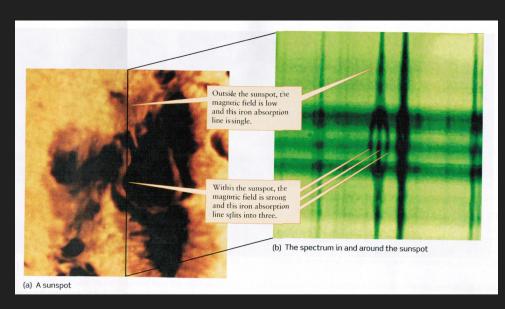
Send nikhilpatten355 to 22333

Poll everywhere

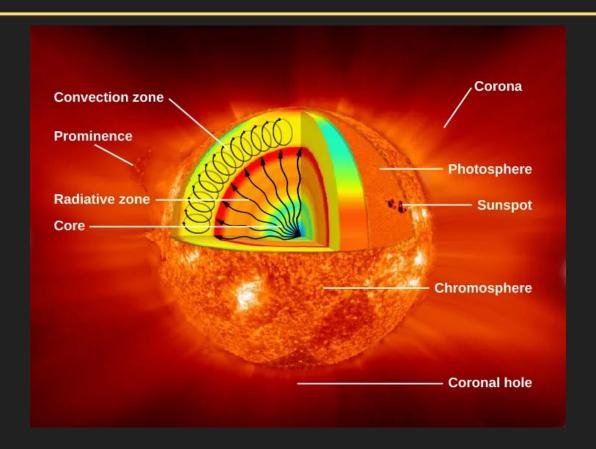


results

Zeeman effect


- Atomic transitions cause absorption lines in spectra.
- External magnetic field causes these absorption lines to split.
- Splitting is proportional to the strength of the magnetic field
- Known as the Zeeman effect.

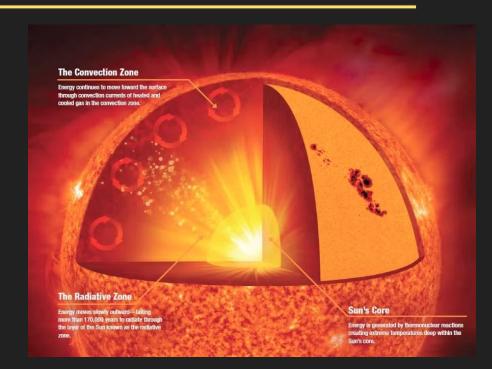
Zeeman effect



- We find spectral features from the Sun vary with time.
- The Sun has a changing magnetic field!

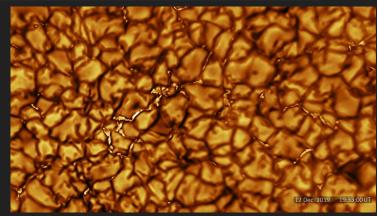
Structure of the Sun

Structure of the Sun-Radiative Zone


- Regions of the Sun split into method of radiative transport
- Energy travels through radiation
- Temperatures too low for fusion
- Photons leave core, scatter throughout the radiative zone
 - Takes a photon ~100,000 years to travel
 from the core to the convective zone.

Structure of the Sun-Convective Zone

- Outside radiative zone
- Transport by convection
 - Hot gas rises, cool gas sinks
- Gives us the the mechanism to form a magnetic field
- Photosphere at the top of convective zone
- Surface of the Sun is covered in granules of convective gas reaching the top layer.
 - Like boiling water



Structure of the Sun- Photosphere

- Thin, opaque outer layer of the Sun
- Covered in granules, about 1000 km in size
- Hotter rising gas, cools and sinks down
- Irregular, cool "sunspots" form from irregularities in the magnetic field

solar granulation

Structure of the Sun- Chromosphere

- Transparent outer layer of gases above the photosphere
- Hot gases that are cooling
- Hotter than the photosphere (10,000 K versus 5780 K).
- Discovery of helium

Structure of the Sun- Corona

- Extends millions of km above the photosphere
- Very low density gas heated to millions of Kelvin
- Charged particles moving along the Sun's magnetic field lines
- Heating mechanism still active area of research

- No class/lab next Monday
- Homework 5 due Wednesday

Next time

The brightness and colors of stars