

Outline

- Poll everywhere question
- Solar telescope
- Working with apparent magnitudes (subtraction)
- Absolute magnitude
- Distance modulus
- HR diagram
- Main sequence
- Supergiants
- White dwarfs

Poll everywhere

When poll is active respond at **PollEv.com/nikhilpatten355**

Send nikhilpatten355 to 22333

Poll everywhere

results

Apparent magnitudes

- Apparent magnitudes are a measure of flux (brightness)
- Allow us to easily compare relative brightness
- Subtracting magnitudes gives ratio of fluxes

$$m = -2.5 \log \frac{F}{F_0}$$

$$m_2 - m_1 = -2.5 \log \frac{F_2}{F_0} - \left(-2.5 \log \frac{F_1}{F_0}\right)$$

$$m_2 - m_1 = -2.5 \log \frac{F_2}{F_0} + 2.5 \log \frac{F_1}{F_0}$$

$$m_2 - m_1 = -2.5 \log \frac{F_2}{F_1}$$

$$m_2 - m_1 = -2.5 \log \frac{F_2}{F_1}$$
$$F \propto \frac{1}{d^2}$$

$$m_2 - m_1 = -5\log\frac{d_1}{d_2}$$

Apparent magnitudes

1. Albiero is a binary star system in Cygnus. Albireo Aa has apparent magnitude 3.21 and Albireo B has apparent magnitude 5.11. How many times brighter is

Albireo Aa than Albireo B?

a. 5.75 b. 2.16 c.

c. 8.23

Apparent magnitudes

1. Albiero is a binary star system in Cygnus. Albireo Aa has apparent magnitude 3.21 and Albireo B has apparent magnitude 5.11. How many times brighter is

Albireo Aa than Albireo B?

a. **5.75**

b. 2.16

c. 8.23

Absolute magnitudes

- Magnitude is a measure of stellar flux (brightness)
- Flux is dependent on distance
- Astronomers often express luminosity in "absolute magnitude"
- The apparent magnitude of a stars as seen from 10 parsecs

If most stars' apparent magnitudes are larger than absolute, what does this

tell us?

Star	Apparent Magnitude m	Absolute Magnitude M 4.8	
The Sun	-26.93		
Sirius	-1.44	1.41	
Vega	0.03	0.58	
Betelgeus	0.45	-5.14	
GJ 75	5.63	5.63	

Distance modulus

- Absolute magnitude is independent of distance
- Apparent magnitude isn't
- Given both apparent and absolute magnitudes, we can find distance
- Distance modulus
- Larger distance modulus → further away

$$\mu = m - M$$

$$\mu = 5 \log d \text{ (pc)} - 5$$

Distance modulus

2. The Andromeda galaxy has apparent magnitude +3.4 and Absolute magnitude -21.5. How far away is it?

$$\mu = m - M$$

$$\mu = 5 \log d \text{ (pc)} - 5$$

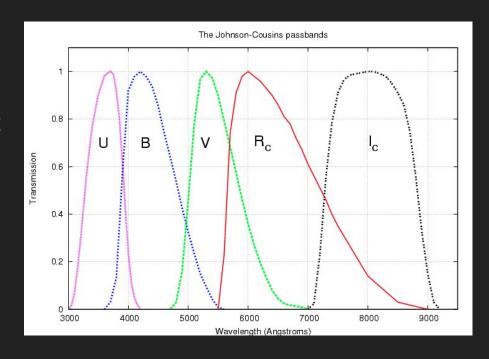
- a. 457,000 pc b. 955,000 pc
- c. 857,000 pc d. ???

Distance modulus

2. The Andromeda galaxy has apparent magnitude +3.4 and Absolute magnitude -21.5. How far away is it?

$$\mu = m - M$$

$$\mu = 5 \log d \text{ (pc)} - 5$$


- a. 457,000 pc b. **955,000 pc**
- c. 857,000 pc d.???

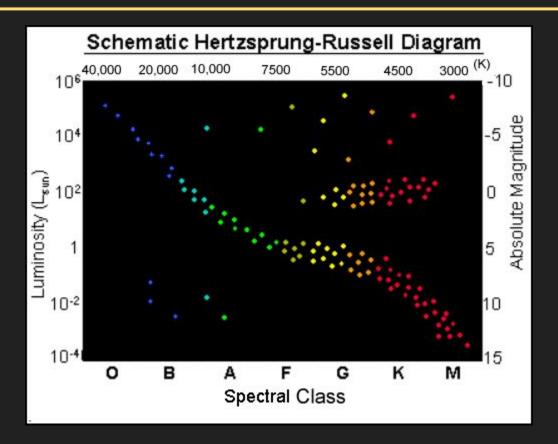
Color

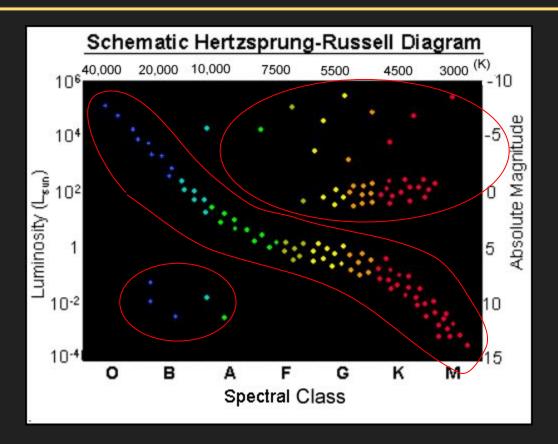
- Astronomers measure stellar brightness in different filters
- Astronomers define color by difference in magnitudes in different filters
- Color = Blue filter -Red filter
- Hotter stars are (usually) bluer than cooler stars

3. Betelgeuse and Bellatrix are stars in the constellation Orion. Which star is brighter in V? Which star has bluer V-R?

Betelgeuse

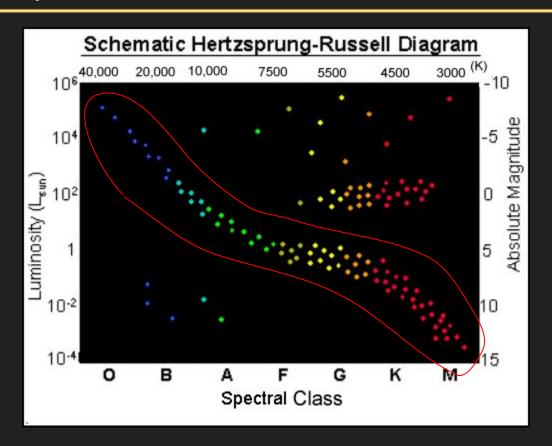
Bellatrix

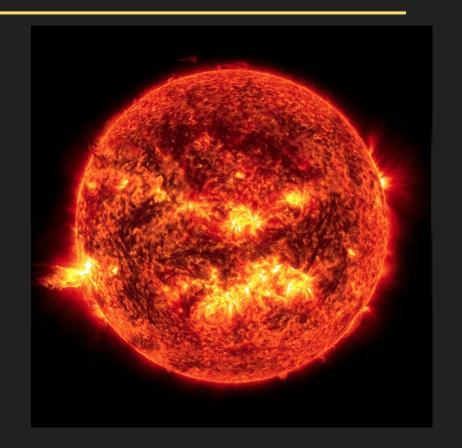

Star	U	В	V	R
Betelgeuse	4.38	2.27	0.42	-1.17
Bellatrix	0.54	1.42	1.64	1.73



HR diagram

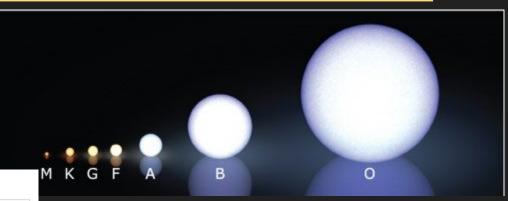
- Absolute magnitude is a measure of luminosity
- Color index is a measure of temperature
- What happens when we compare many stars absolute magnitude and color?



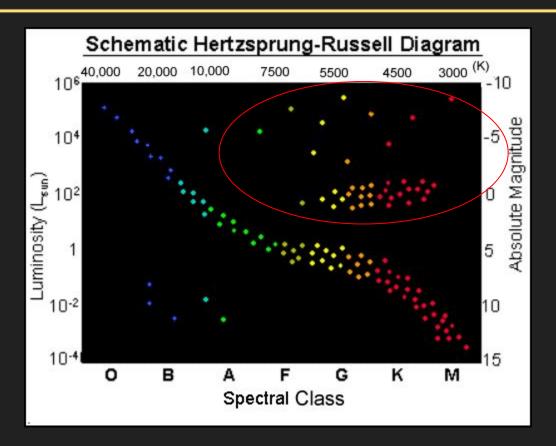

The main sequence

The main sequence

- Stars spend the majority of their lives fusing hydrogen into helium in their cores
- This is the main sequence



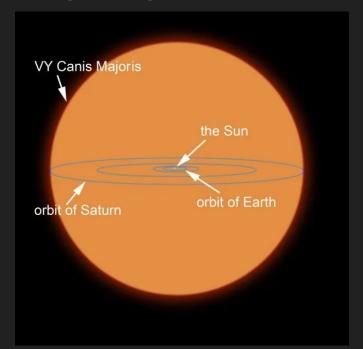
The main sequence

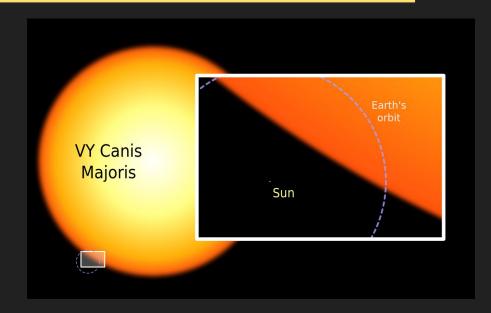

- Some main sequence stars are hotter than others
- Temperature is determined by mass

Characteristics of Main-Sequence Stars

Spectral Type	Mass (Sun = 1)	Luminosity (Sun = 1)	Temperature	Radius (Sun = 1)
O5	40	$7 imes 10^5$	40,000 K	18
B0	16	$2.7 imes 10^4$	28,000 K	7
A0	3.3	55	10,000 K	2.5
F0	1.7	5	7500 K	1.4
G0	1.1	1.4	6000 K	1.1
К0	0.8	0.35	5000 K	0.8
МО	0.4	0.05	3500 K	0.6

Supergiants


- When hydrogen in the core runs out, the star becomes a supergiant star
- Fusion stops (helium core), core shrinks, helium fuses into carbon...
- Outer layers of star expand from increased pressure from helium fusion, lower temperature



Supergiants

The star expands significantly during supergiant phase

White dwarfs

- Eventually stars undergo supernova (discussed next class)
- Shed their outer layers leaving behind a dense, hot core
- Call the core remnant a white dwarf

Homework 6 assigned today

Next time

• Stellar evolution