Equations

$$\alpha = \frac{L}{D} \qquad \qquad \theta = \frac{\ell}{R}$$

$$\frac{P_1^2}{P_2^2} = \frac{a_1^3}{a_2^3} \qquad \qquad P^2 \propto a^3$$

$$F_g = G \frac{M_1 M_2}{r^2} \qquad \qquad g = G \frac{M}{R^2}$$

$$v = \sqrt{\frac{GM}{R}} \qquad \qquad P^2 = \frac{4\pi^2}{GM} a^3$$

$$e = \frac{c}{2a} \qquad \qquad \text{Ap} = a (1 + e)$$

$$\text{Pe} = a (1 - e) \qquad \qquad F = ma$$

Constants/Conversions

1 pc =
$$3.09 \times 10^{16}$$
 m
 π rad = 180 °
 $60' = 1$ °
 $60'' = 1''$
 $G = 6.67 \times 10^{-11}$ N m² kg⁻²

SI prefixes

Name	Symbol	Base 10
Tera	Т	10^{12}
Giga	G	10^{9}
Mega	M	10^{6}
Kilo	k	10^{3}
Centi	c	10^{-2}
Milli	m	10^{-3}
Micro	μ	10^{-6}
Nano	n	10^{-9}
Pico	p	10^{-12}
Femto	f	10^{-15}

Multiple Choice Section (50 %)

1. Why is the sidereal day different than the solar day?

- (a) The precession of Earth's rotational axis.
- (b) The Earth moves in its orbit as it rotates on its axis.
- (c) The Earth orbits around the Sun in an epicycle about the deferent.
- (d) Angular momentum is transferred from Earth's rotation to the orbit of the Moon.

2. What is the significance of the Equinox?

- (a) The Sun is at its highest point in the sky.
- (b) The Sun is at its lowest point in the sky.
- (c) There are equal parts day and night.
- (d) The Earth is closest to the Sun.

3. Why was the Julian calendar adopted over the Lunisolar calendar?

- (a) The Julian calendar requires less-complex corrections compared to the Lunisolar calendar.
- (b) The Julian calendar is a more accurate measure of the tropical year.
- (c) The Julian calendar used the lunar phases to keep track of the Earth year.
- (d) The Julian calendar is a more accurate calendar than the Gregorian calendar.

4. What is the significance of the Zodiac?

- (a) They are the 12 constellations that lie on the celestial equator.
- (b) They are the 12 constellations that lie on the galactic equator.
- (c) They are the 12 constellations that lie on the celestial poles.
- (d) They are the 12 constellations that lie on the ecliptic.

5. The declination of our zenith is:

- (a) The longitude of our observing location.
- (b) The time zone of our observing location.
- (c) The latitude of our observing location.
- (d) The right ascension on the meridian.

6.	The Sun is $66.5\ ^\circ$ above the northern horizon on the summer solstice (21 June). What is our observation latitude?
	(a) 0°
	(b) -23.5 $^{\circ}$
	(c) 66.5 °
	(d) $+23.5$ °
7.	The Orion Nebula has right ascension 6 hours. When is the best month to observe this target?
	(a) March
	(b) December
	(c) June
	(d) September
8.	True or False: Newton's Laws of Gravitation can be used to derive Kepler's Third Law.
	(a) True
	(b) False
9.	When will the First Quarter Moon cross our meridian?
	(a) 6 am
	(b) 12 pm
	(c) 6 pm
	(d) 12 am
10.	Why did astronomers hypothesize there may have been another planet interior to Mercury?
	(a) Mercury's rotation is in a 2:3 resonance with its orbital period.
	(b) Mercury has an unusually eccentric orbit.
	(c) The Mercurian atmosphere is stripped.
	(d) Mercury's orbit precesses.

Open ended (50 %)

11. Suppose you are on a manned mission to Mars.

- (a) On the summer solstice at your Martian base, you notice the Sun is at your zenith. At another site on Mars 1,479 km south, objects cast shadows at 25 °. Calculate the radius of Mars.
- (b) If the surface gravity on Mars is 3.728 m s^{-2} , calculate the mass of Mars.
- (c) On the surface of Mars, you notice the Martian moon Phobos in the sky. If Phobos is 12.7' in size, calculate the semi-major axis of the orbit of Phobos. Phobos has radius 11,080 m.
- (d) Calculate the force of gravity between Mars and Phobos. Phobos has mass 1.06×10^{16} kg.
- (e) Calculate the surface gravity on the surface of Phobos. Phobos has radius 11,080 m.

- 12. Ganymede is one of the Galilean moons around Jupiter.
 - (a) If Ganymede has Apoapsis 1.0716×10^9 m and Periapsis 1.0692×10^9 m, find the eccentricity of Ganymede.
 - (b) Find the semi-major axis of Ganymede's orbit.
 - (c) Find the orbital speed of Ganymede. Hint: Jupiter's mass is 1.90×10^{27} kg.
 - (d) Find the orbital period of Ganymede.
 - (e) Europa is another moon around Jupiter with orbital period 3.551 days. Calculate Europa's semi-major axis.

Answer key

- 1. B
- 2. C
- 3. A
- 4. D
- 5. C
- 6. A
- 7. B
- 8. A
- 9. C
- 10. D
- **11. a.** R = 3,390 km
 - **b.** $M = 6.42 \times 10^{23} \text{ kg}$
 - **c.** $a = 9.36 \times 10^6 \text{ m}$
 - **d.** $F_g = 5180 \text{ TN } (5.180 \times 10^{15} \text{ N})$
 - **e.** $g = 0.576 \text{ cm s}^{-2}$
- **12. a.** e = 0.00112
 - **b.** $a = 1.0704 \text{ Gm} (1.0704 \times 10^9 \text{ m})$
 - **c.** $v = 10,880 \text{ m s}^{-1}$
 - **d.** P = 7.155 days
 - **e.** $a = 6.709 \times 10^8 \text{ m}$