Homework 1 1

PHYS1120 Summer 2025

Show all work for credit! Due Date: Friday, 11 July

- 1. Vector \vec{A} has magnitude $|\vec{A}| = 8$ and makes an angle of 225° CCW to the +x-axis. Vector \vec{B} can be represented as $\langle 5, -12 \rangle$.
 - (a) Sketch and label vectors \vec{A} and \vec{B} on an xy-plane.
 - (b) Write, in component form, vector \vec{A} .
 - (c) Calculate the magnitude and direction of vector \vec{B} .
 - (d) Calculate the vector sum $\vec{A} + \vec{B}$. Express your answer as a magnitude and direction.
- 2. A 100 g aluminum cup ($c = 900 \text{ J} / \text{kg }^{\circ}\text{C}$) is initially at room temperature (68 °F) and is filled with 200 grams of water. A hot copper sphere ($c = 387 \text{ J} / \text{kg }^{\circ}\text{C}$) with mass $m_{\text{copper}} = 100 \text{ g}$ and temperature 500 °F is then submerged.
 - (a) Convert all initial temperatures from Fahrenheit to Celsius.
 - (b) Calculate the final temperature (in Celsius) of the system after thermal equilibrium has been achieved.
- 3. An astronaut is stranded in low-Earth orbit. Because of the lack of atmosphere, the astronaut only loses heat through thermal radiation.
 - (a) Assuming the astronaut is at body temperature and has a surface area of $\sim 1 \text{ m}^2$, calculate the heat lost through thermal radiation.
 - (b) The Sun has a radius $R_{\odot} = 6.957 \times 10^8$ m and temperature T = 5780 K. Calculate the power radiated by the Sun. Use an emissivity e = 1.
 - (c) Use your answer from part (b) to calculate the intensity of Sunlight at the Earth. The Sun's luminosity is equally distributed across the surface area of a sphere of radius r a distance r from the Sun. The Earth's distance from the Sun is approximately 1.50×10^{11} m.
 - (d) Convert the intensity of Sunlight to the Power received by the astronaut, with surface-area $A=1~\mathrm{m}^2$.
 - (e) Will the astronaut heat up or cool down? Why?
- 4. A 5 kg block oscillates on a spring with spring constant k = 10 N/m. The amplitude of the oscillations is measured to be A = 10 cm.
 - (a) Calculate the angular frequency of oscillations.
 - (b) Calculate the period of oscillations.

2 Homework 1

- (c) Calculate the speed of the block as it passes through the equilibrium point.
- (d) At what displacement from the equilibrium position will the block move with speed 0.05 m s^{-1} ?
- 5. A message in a bottle floats in the ocean. The distance between wave crests in the ocean are observed to be 5 m apart and the bottle bobs every 10 s. What is the speed of the ocean waves?
- 6. Find the temperature x where $x \, {}^{\circ}\mathbf{F} = x \, {}^{\circ}\mathbf{C}$. Find also the temperature $y \, {}^{\circ}\mathbf{F} = y \, \mathbf{K}$.

```
Answer key: (1a) ...; (1b) \vec{A} = \langle -5.66, -5.66 \rangle; (1c) |\vec{B}| = 13, \theta_B = 292.6°; (1d) |\vec{A} + \vec{B}| = 17.67 @ 267°; (2a) T_{i,Al} = 20°C, T_{i,water} = 20°C, T_{i,Cu} = 260°C; (2b) |\vec{T}_f| = 29.6°C; (3a) 524 W; (3b) 3.85 \times 10^{26} W; (3c) 1360 W m<sup>-2</sup>; (3d) 1360 W; (3e) Heat up; (4a) 1.41 rad s<sup>-1</sup>; (4b) 0.113 s; (4c) 0.141 m s<sup>-1</sup>; (4d) 9.35 cm; (5) 0.50 m s<sup>-1</sup>; (6)-40 °F = -40 °C, 574.6 °F = 574.6 K
```

How many hours (approximately) did it take you to complete this assignment?