Heat problem

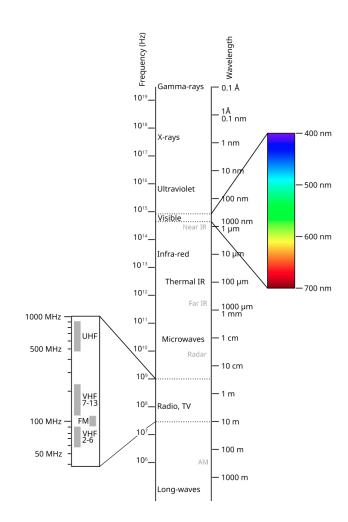
- 1. Calculate the heat required (in J and calories) to raise the temperature of a 5 kg block of copper 60°C.
- Calculate the energy needed to heat the equivalent mass of water the same amount

Substances	Specific heat (c)	
Solids	J/(kg·°C)	kcal/(kg°C) ¹
Aluminum	900	0.215
Asbestos	800	0.19
Concrete, granite (average)	840	0.20
Copper	387	0.0924
Glass	840	0.20
Gold	129	0.0308
Human body (average at 37 °C)	3500	0.83
ce (average, -50°C to 0°C)	2090	0.50
ron, steel	452	0.108
ead	128	0.0305
Silver	235	0.0562
Wood	1700	0.4
iquids		
Benzene	1740	0.415
Ethanol	2450	0.586
Glycerin	2410	0.576
Mercury	139	0.0333
Vater (15.0 °C)	4186	1.000

Thermal expansion problem 1

1. Calculate the increase in temperature necessary to increase the volume of a brass sphere by 5%.

	Coefficient of linear expansion	Coefficient of volume expansion
Material	$lpha(1/{}^{ m o}{ m C})$	$eta(1/{ m ^{o}C})$
Solids		
Aluminum	$25 imes10^{-6}$	75×10^{-6}
Brass	$19 imes 10^{-6}$	$56 imes 10^{-6}$
Copper	17×10^{-6}	$51 imes 10^{-6}$
Gold	14×10^{-6}	$42 imes 10^{-6}$


Thermal expansion problem 2

1. 500 mL of an unknown liquid expands to 533 mL when heated by 60 °C. Identify the unknown liquid.

Liquids	
Ether	1650×10^{-6}
Ethyl alcohol	1100×10^{-6}
Petrol	$950 imes 10^{-6}$
Glycerin	500×10^{-6}
Mercury	$180 imes 10^{-6}$
Water	$210 imes 10^{-6}$

Thermal radiation

- The surface of the Sun has a temperature of 5780 K. Find the peak wavelength of the thermal emission.
- 2. The human body temperature is 37 °C. Find the peak of the thermal emission.

