#### PHYS1120

#### Summer 2025

### 1. Goal(s)

- Determine the magnetic field resulting from a current-carrying wire as a function of distance above the wire.
- Determine the magnetic field produced by two current-carrying wires, with parallel and anti-parallel currents.
- Measure the magnetic field inside a solenoid and calculate the number of turns.

### 2. Materials

• Wire demo

• N-turn solenoid

• Multimeters

- Power supply
- Vernier magnetometer
- Logger Pro interface
- Logger Pro software

# 3. Equation(s)

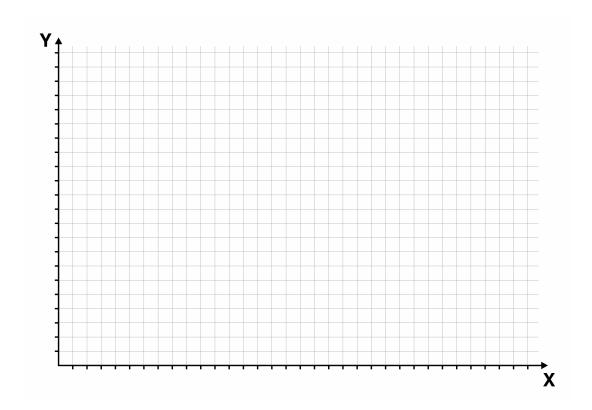
$$B = \frac{\mu_0 I_{\text{enc}}}{2\pi r} \text{ (Ampère's Law)}$$

$$B = \frac{\mu_0 I}{2\pi r} \text{ (Single wire)}$$

$$B = \frac{\mu_0 NI}{L} \text{ (Solenoid)}$$

#### 4. Methods

## I. Magnetic field from a single wire


- a. Run current through a single wire.
- b. Turn on the multimeter and record the current.

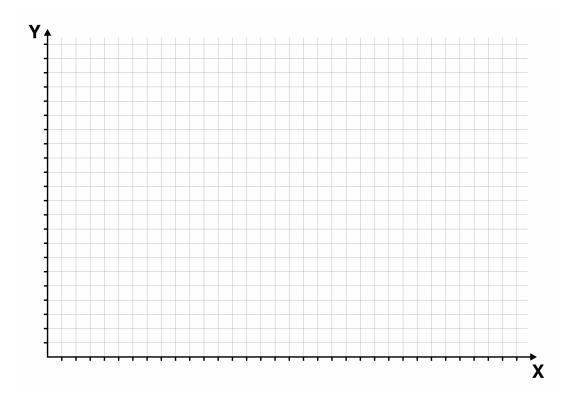
2 Lab 4

- c. Plug in the magnometer into the interface and start the logger pro software.
- d. Turn off the power supply and record zero the magnometer.
- e. Power on the power supply and record the magnetic field strength at varying distances.

$$I = \_\_\_$$
 A

| $\left  ec{B}  ight $ | (T) | r(m) | $\frac{1}{r} \left( \frac{1}{m} \right)$ |
|-----------------------|-----|------|------------------------------------------|
|                       |     |      |                                          |
|                       |     |      |                                          |
|                       |     |      |                                          |
|                       |     |      |                                          |
|                       |     |      |                                          |
|                       |     |      |                                          |




## II. Magnetic field from two wires.

- a. Now set up two wires with parallel currents. What do you notice about the magnetic field?
- b. Now do the same for two wires with anti-parallel currents. Measure and record several measurements of the magnetic field as a function of distance.

$$I = \_\_$$
 A

| $ \vec{B}  (T)$ | r(m) | $\frac{1}{r} \left( \frac{1}{m} \right)$ |
|-----------------|------|------------------------------------------|
|                 |      |                                          |
|                 |      |                                          |
|                 |      |                                          |
|                 |      |                                          |
|                 |      |                                          |

4 Lab 4



# III. Magnetic field inside of a solenoid.

- a. Now run current through a solenoid.
- b. Turn on the ammeter to measure the current in the wire. Record this value
- c. Turn off the power supply and zero the magnometer.
- d. Place the magnometer in the center of the solenoid and record the magnetic field.
- e. Using the solenoid equation, calculate the predicted number of turns of the solenoid.

$$I = \_\_$$
 A