Physics 1210/1310

Mechanics & Thermodynamics

Lecture 7-10, chapter 4 & 5

Dynamics – the causes of change of motion

The cause of a change of motion is called a force.

Forces can vary dramatically in magnitude.

Force is a vector quantity.

The unit of force is the Newton $[N] = [kg m / s^2]$

A force can be exerted as a push or a pull and at any angle.

We can analyze the components of a force.

Component vectors \vec{F}_x and \vec{F}_y together have the same effect as original force \vec{F} . (b) If more than one force acts on an object, we may add the vectors to find the resultant force R.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.

The three Newton Laws :

(11) for systems in equilibrium: $\Sigma F = 0$

(12) for other systems: $\Sigma F = \mathbf{m} a$

(13) when two bodies interact through forces for every action there is an equal reaction $F_{AB} = - F_{BA}$

How big does F3 have to be to have a net force of zero?

 $\begin{aligned} F_{1y} + F_{2y} &= 2 * 141.4 \text{ [N]} (\sin(45)) = + 200 \text{[N]} \\ &\rightarrow F_3 = F_{3y} = -200 \text{ [N]} \end{aligned}$ Force in x: $F_{1x} + F_{2x} = -141.4 \cos(45) \text{ [N]} + 100 \text{ [N]} = 0$

Special case of gravity: weight is a force *! Careful contrary to common use of term!*

Overview concepts chapter 5

(5.2)

$$\sum F_x = 0 \qquad \sum F_y = 0$$

article in equilibrium, component form)

right © 2004 Pearson Education, Inc., publishing as Addison Wesley.

Tension and N3

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.

Problem 4.4

How large *F* For F_x to be 60[N] How large is F_y ?

Trick:

Analyze x/y with respect to plane of motion.

 $F_x = F \cos \theta, \\ \theta = 30^\circ$

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.

(1) (2)

 $v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$ (constant acceleration only)

(2.13)

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.

Acceleration hammer can be found from 2.13 above with $v_v = 0$ and $v_{0v} = -3.2[m/s]$ and $y - y_0 = -0.0045[m]$

Thus the net force on the hammer head is

This total force on the hammer is shown in the force diagram.

Hammer and nail are an action-reaction pair, thus, $/F_{AB}/=/F_{BA}/$

Newton's Second Law – Motion and Friction

Generally, when two bodies slide along each other there is a force opposing the motion. This force is called friction. It is related to the texture of the two bodies and thus to *n*.

$f_{\rm k} = \mu_{\rm k} n$	(magnitude of kinetic friction force)	(5.5)
Copyright © 2004 Pea	rson Education, Inc., publishing as Addison Wesley.	
$f_{\rm s} \leq \mu_{\rm s} n$	(magnitude of static friction force)	(5.6)
Copyright © 2004 Pe	arson Education, Inc., publishing as Addison Wesley.	

Friction has two aspects: To get a motion started and To maintain an existing motion

